We shall denote antecedents by the large letters of the alphabet, and the consequents corresponding to them by the small. Let A, then, be an agent or cause, and let the object of our inquiry be to ascertain what are the effects of this cause. If we can either find, or produce, the agent A in such varieties of circumstances that the different cases have no circumstance in common except A; then whatever effect we find to be produced in all our trials, is indicated as the effect of A. Suppose, for example, that A is tried along with B and C, and that the effect is a b c; and suppose that A is next tried with D and E, but without B and C, and that the effect is a d e. Then we may reason thus: b and c are not effects of A, for they were not produced by it in the second experiment; nor are d and e, for they were not produced in the first. Whatever is really the effect of A must have been produced in both instances; now this condition is fulfilled by no circumstance except a. The phenomenon a can not have been the effect of B or C, since it was produced where they were not; nor of D or E, since it was produced where they were not. Therefore it is the effect of A.
For example, let the antecedent A be the contact of an alkaline substance and an oil. This combination being tried under several varieties of circumstances, resembling each other in nothing else, the results agree in the production of a greasy and detersive or saponaceous substance: it is therefore concluded that the combination of an oil and an alkali causes the production of a soap. It is thus we inquire, by the Method of Agreement, into the effect of a given cause.
In a similar manner we may inquire into the cause of a given effect. Let a be the effect. Here, as shown in the last chapter, we have only the resource of observation without experiment: we can not take a phenomenon of which we know not the origin, and try to find its mode of production [pg 279] by producing it: if we succeeded in such a random trial it could only be by accident. But if we can observe a in two different combinations, a b c and a d e; and if we know, or can discover, that the antecedent circumstances in these cases respectively were A B C and A D E, we may conclude by a reasoning similar to that in the preceding example, that A is the antecedent connected with the consequent a by a law of causation. B and C, we may say, can not be causes of a, since on its second occurrence they were not present; nor are D and E, for they were not present on its first occurrence. A, alone of the five circumstances, was found among the antecedents of a in both instances.
For example, let the effect a be crystallization. We compare instances in which bodies are known to assume crystalline structure, but which have no other point of agreement; and we find them to have one, and as far as we can observe, only one, antecedent in common: the deposition of a solid matter from a liquid state, either a state of fusion or of solution. We conclude, therefore, that the solidification of a substance from a liquid state is an invariable antecedent of its crystallization.
In this example we may go further, and say, it is not only the invariable antecedent but the cause; or at least the proximate event which completes the cause. For in this case we are able, after detecting the antecedent A, to produce it artificially, and by finding that a follows it, verify the result of our induction. The importance of thus reversing the proof was strikingly manifested when, by keeping a phial of water charged with siliceous particles undisturbed for years, a chemist (I believe Dr. Wollaston) succeeded in obtaining crystals of quartz; and in the equally interesting experiment in which Sir James Hall produced artificial marble by the cooling of its materials from fusion under immense pressure: two admirable examples of the light which may be thrown upon the most secret processes of Nature by well-contrived interrogation of her.
But if we can not artificially produce the phenomenon A, the conclusion that it is the cause of a remains subject to very considerable doubt. Though an invariable, it may not be the unconditional antecedent of a, but may precede it as day precedes night or night day. This uncertainty arises from the impossibility of assuring ourselves that A is the only immediate antecedent common to both the instances. If we could be certain of having ascertained all the invariable antecedents, we might be sure that the unconditional invariable antecedent, or cause, must be found somewhere among them. Unfortunately it is hardly ever possible to ascertain all the antecedents, unless the phenomenon is one which we can produce artificially. Even then, the difficulty is merely lightened, not removed: men knew how to raise water in pumps long before they adverted to what was really the operating circumstance in the means they employed, namely, the pressure of the atmosphere on the open surface of the water. It is, however, much easier to analyze completely a set of arrangements made by ourselves, than the whole complex mass of the agencies which nature happens to be exerting at the moment of the production of a given phenomenon. We may overlook some of the material circumstances in an experiment with an electrical machine; but we shall, at the worst, be better acquainted with them than with those of a thunder-storm.
The mode of discovering and proving laws of nature, which we have now examined, proceeds on the following axiom: Whatever circumstances can be excluded, without prejudice to the phenomenon, or can be absent notwithstanding its presence, is not connected with it in the way of causation. [pg 280] The casual circumstances being thus eliminated, if only one remains, that one is the cause which we are in search of: if more than one, they either are, or contain among them, the cause; and so, mutatis mutandis, of the effect. As this method proceeds by comparing different instances to ascertain in what they agree, I have termed it the Method of Agreement; and we may adopt as its regulating principal the following canon:
First Canon.
If two or more instances of the phenomenon under investigation have only one circumstance in common, the circumstance in which alone all the instances agree, is the cause (or effect) of the given phenomenon.
Quitting for the present the Method of Agreement, to which we shall almost immediately return, we proceed to a still more potent instrument of the investigation of nature, the Method of Difference.