TO TELL THE APPROACH OF STORMS.

The proximity of Storms has been ascertained with accuracy by various indications of the electrical state of the atmosphere. Thus Professor Scott, of Sandhurst College, observed in Shetland that drinking-glasses, placed in an inverted position upon a shelf in a cupboard on the ground-floor of Belmont House, occasionally emitted sounds as if they were tapped with a knife, or raised a little and then let fall on the shelf. These sounds preceded wind; and when they occurred, boats and vessels were immediately secured. The strength of the sound is said to be proportioned to the tempest that follows.

REVOLVING STORMS.

By the conjoint labours of Mr. Redfield, Colonel Reid, and Mr. Piddington, on the origin and nature of hurricanes, typhoons, or revolving storms, the following important results have been obtained. Their existence in moderate latitudes on both sides the equator; their absence in the immediate neighbourhood of the equatorial regions; and the fact, that while in the northern latitudes these storms revolve in a direction contrary to the hands of a watch the face of which is placed upwards, in the southern latitudes they rotate in the opposite direction,—are shown to be so many additions to the long chain of evidence by which the rotation of the earth as a physical fact is demonstrated.

IMPETUS OF A STORM.

Captain Sir S. Brown estimates, from experiments made by him at the extremity of the Brighton-Chain Pier in a heavy south-west gale, that the waves impinge on a cylindrical surface one foot high and one foot in diameter with a force equal to eighty pounds, to which must be added that of the wind, which in a violent storm exerts a pressure of forty pounds. He computed the collective impetus of the waves on the lower part of a lighthouse proposed to be built on the Wolf Rock (exposed to the most violent storms of the Atlantic), of the surf on the upper part, and of the wind on the whole, to be equal to 100 tons.

HOW TO MAKE A STORM-GLASS.

This instrument consists of a glass tube, sealed at one end, and furnished with a brass cap at the other end, through which the air is admitted by a very small aperture. Nearly fill the tube with the following solution: camphor, 2½ drams; nitrate of potash, 38 grains; muriate of ammonia, 38 grains; water, 9 drams; rectified spirit, 9 drams. Dissolve with heat. At the ordinary temperature of the atmosphere, plumose crystals are formed. On the approach of stormy weather, these crystals appear compressed into a compact mass at the bottom of the tube; while during fine weather they assume their plumose character, and extend a considerable way up the glass. These results depend upon the condition of the air, but they are not considered to afford any reliable indication of approaching weather.

SPLENDOUR OF THE AURORA BOREALIS.