HEAT AND EVAPORATION.
In a communication made to the French Academy, M. Daubrée calculates that the Evaporation of the Water on the surface of the globe employs a quantity of heat about equal to one-third of what is received from the sun; or, in other words, equal to the melting of a bed of ice nearly thirty-five feet in thickness if spread over the globe.
HEAT AND MECHANICAL POWER.
It has been found that Heat and Mechanical Power are mutually convertible; and that the relation between them is definite, 772 foot-pounds of motive power being equivalent to a unit of heat, that is, to the amount of heat requisite to raise a pound of water through one degree of Fahrenheit.
HEAT OF MINES.
One cause of the great Heat of many of our deep Mines, which appears to have been entirely lost sight of, is the chemical action going on upon large masses of pyritic matter in their vicinity. The heat, which is so oppressive in the United Mines in Cornwall that the miners work nearly naked, and bathe in water at 80° to cool themselves, is without doubt due to the decomposition of immense quantities of the sulphurets of iron and copper known to be in this condition at a short distance from these mineral works.—R. Hunt, F.R.S.
VIBRATION OF HEATED METALS.
Mr. Arthur Trevelyan discovered accidentally that a bar of iron, when heated and placed with one end on a solid block of lead, in cooling vibrates considerably, and produces sounds similar to those of an Æolian harp. The same effect is produced by bars of copper, zinc, brass, and bell-metal, when heated and placed on blocks of lead, tin, or pewter. The bars were four inches long, one inch and a half wide, and three-eighths of an inch thick.
The conditions essential to these experiments are, That two different metals must be employed—the one soft and possessed of moderate conducting powers, viz. lead or tin, the other hard; and it matters not whether soft metal be employed for the bar or block, provided the soft metal be cold and the hard metal heated.