COLOUR OF A BODY AND ITS MAGNETIC PROPERTIES.
Solar rays bleach dead vegetable matter with rapidity, while in living parts of plants their action is frequently to strengthen the colour. Their power is perhaps best seen on the sides of peaches, apples, &c., which, exposed to a midsummer’s sun, become highly coloured. In the open winter of 1850, Mr. Adie, of Liverpool, found in a wallflower plant proof of a like effect: in the dark months there was a slow succession of one or two flowers, of uniform pale yellow hue; in March streaks of a darker colour appeared on the flowers, and continued to slowly increase till in April they were variegated brown and yellow, of rich strong colours. On the supposition that these changes are referable to magnetic properties, may hereafter be explained Mrs. Somerville’s experiments on steel needles exposed to the sun’s rays under envelopes of silk of various colours; the magnetisation of steel needles has failed in the coloured rays of the spectrum, but Mr. Adie considers that under dyed silk the effect will hinge on the chemical change wrought in the silk and its dye by the solar rays.
THE ONION AND MAGNETISM.
A popular notion has long been current, more especially on the shores of the Mediterranean, that if a magnetic rod be rubbed with an onion, or brought in contact with the emanations of the plant, the directive force will be diminished, while a compass thus treated will mislead the steersman. It is difficult to conceive what could have given rise to so singular a popular error.[47]—Humboldt’s Cosmos, vol. v.
DECLINATION OF THE NEEDLE—THE EARTH A MAGNET.
The Inclination or Dip of the Needle was first recorded by Robert Norman, in a scarce book published in 1576 entitled The New Attractive; containing a short Discourse of the Magnet or Loadstone, &c.
Columbus has not only the merit of being the first to discover a line without magnetic variation, but also of having first excited a taste for the study of terrestrial magnetism in Europe, by means of his observations on the progressive increase of western declination in receding from that line.
The first chart showing the variation of the compass,[48] or the declination of the needle, based on the idea of employing curves drawn through points of equal declination, is due to Halley, who is justly entitled the father and founder of terrestrial magnetism. And it is curious to find that in No. 195 of the Philosophical Transactions, in 1683, Halley had previously expressed his belief that he has put it past doubt that the globe of the earth is one great magnet, having four magnetical poles or points of attraction, near each pole of the equator two; and that in those parts of the world which lie near adjacent to any one of those magnetical poles, the needle is chiefly governed thereby, the nearest pole being always predominant over the more remote.
“To Halley” (says Sir John Herschel) “we owe the first appreciation of the real complexity of the subject of magnetism. It is wonderful indeed, and a striking proof of the penetration and sagacity of this extraordinary man, that with his means of information he should have been able to draw such conclusions, and to take so large and comprehensive a view of the subject as he appears to have done.”
And, in our time, “the earth is a great magnet,” says Faraday: “its power, according to Gauss, being equal to that which would be conferred if every cubic yard of it contained six one-pound magnets; the sum of the force is therefore equal to 8,464,000,000,000,000,000,000 such magnets.”