The tail, from October 2 to 16, when the comet was most conspicuous, appears to have maintained an average length of at least 40,000,000 miles, subtending an angle varying from 30° to 40°. The dark line or space down the centre, frequently remarked in other great comets, was a striking characteristic in that of Donati. The nucleus, though small, was intensely brilliant in powerful instruments, and for some time bore high magnifiers to much greater advantage than is usual with these objects. In several respects this comet resembled the famous ones of 1744, 1680, and 1811, particularly as regards the signs of violent agitation going on in the vicinity of the nucleus, such as the appearance of luminous jets, spiral offshoots, &c., which rapidly emanated from the planetary point and as quickly lost themselves in the general nebulosity of the head.

On the 5th Oct. the most casual observer had an opportunity of satisfying himself as to the accuracy of the mathematical theory of the motions of comets in the near approach of the nucleus of Donati’s to Arcturus, the principal star in the constellation Bootes. The circumstance of the appulse was very nearly as predicted by Mr. Hind.

The comet, according to the investigations by M. Loewy, of the Observatory of Vienna, arrived at its least distance from the sun a few minutes after eleven o’clock on the morning of the 30th of September; its longitude, as seen from the sun at this time, being 36° 13′, and its distance from him 55,000,000 miles. The longer diameter of its orbit is 184 times that of the earth’s, or 35,100,000,000 miles; yet this is considerably less than 1/1000th of the distance of the nearest fixed star. As an illustration, let any one take a half-sheet of note-paper, and marking a circle with a sixpence in one corner of it, describe therein our solar system, drawing the orbits of the earth and the inferior planets as small as he can by the aid of a magnifying-glass. If the circumference of the sixpence stands for the orbit of Neptune, then an oval filling the page will fairly represent the orbit of Donati’s comet; and if the paper be laid upon the pavement under the west door of St. Paul’s Cathedral, London, the length of that edifice will inadequately represent the distance of the nearest fixed star. The time of revolution resulting from Mr. Loewy’s calculations is 2495 years, which is about 500 years less than that of the comet of 1811 during the period it was visible from the earth.

That the comet should take more than 2000 years to travel round the above page of note-paper is explained by its great diminution of speed as it recedes from the sun. At its perihelion it travelled at the rate of 127,000 miles an hour, or more than twice as fast as the earth, whose motion is about 1000 miles a minute. At its aphelion, however, or its greatest distance from the sun, the comet is a very slow body, sailing at the rate of 480 miles an hour, or only eight times the speed of a railway express. At this pace, were it to travel onward in a straight line, the lapse of a million of years would find it still travelling half way between our sun and the nearest fixed star.

As this comet last visited us between 2000 and 2495 years since, we know that its appearance was at an interesting period of the world’s history. It might have terrified the Athenians into accepting the bloody code of Draco. It might have announced the destruction of Nineveh, or of Babylon, or the capture of Jerusalem by Nebuchadnezzar. It might have been seen by the expedition which sailed round Africa in the reign of Pharaoh Necho. It might have given interest to the foundation of the Pythian games. Within the probable range of its last visitation are comprehended the whole of the great events of the history of Greece; and among the spectators of the comet may have been the so-called sages of Greece and even the prophets of Holy Writ: Thales might have attempted to calculate its return, and Jeremiah might have tried to read its warning.—Abridged from a Communication from Mr. Hind to the Times, and from a Leader in that Journal.

FOOTNOTES:

[1] From a photograph, with figures, to show the relative size of the tube aperture.

[2] Weld’s History of the Royal Society, vol. ii. p. 188.

[3] Dr. Whewell (Bridgewater Treatise, p. 266) well observes, that Boyle and Pascal are to hydrostatics what Galileo is to mechanics, and Copernicus, Kepler, and Newton are to astronomy.