When the lens of any small fish, such as a minnow, a par, or trout, has been taken out, along with the adhering vitreous humour, from the eye-ball by cutting the sclerotic coat with a pair of scissors, it should be placed upon a piece of fine silver-paper previously freed from its minute adhering fibres. The absorbent nature of the paper will assist in removing all the vitreous humour from the lens; and when this is carefully done, by rolling it about with another piece of silver-paper, there will still remain, round or near the equator of the lens, a black ridge, consisting of the processes by which it was suspended in the eye-ball. The black circle points out to us the true axis of the lens, which is perpendicular to a plane passing through it. When the small crystalline has been freed from all the adhering vitreous humour, the capsule which contains it will have a surface as fine as a pellicle of fluid. It is then to be dropped from the paper into a cavity formed by a brass rim, and its position changed till the black circle is parallel to the circular rim, in which case only the axis of the lens will be a continuation of the axis of the observer’s eye.—Edin. Jour. Science, vol. ii.

LEUWENHOECK’S MICROSCOPES.

Leuwenhoeck, the father of microscopical discovery, communicated to the Royal Society, in 1673, a description of the structure of a bee and a louse, seen by aid of his improved microscopes; and from this period until his decease in 1723, he regularly transmitted to the society his microscopical observations and discoveries, so that 375 of his papers and letters are preserved in the society’s archives, extending over fifty years. He further bequeathed to the Royal Society a cabinet of twenty-six microscopes, which he had ground himself and set in silver, mostly extracted by him from minerals; these microscopes were exhibited to Peter the Great when he was at Delft in 1698. In acknowledging the bequest, the council of the Royal Society, in 1724, presented Leuwenhoeck’s daughter with a handsome silver bowl, bearing the arms of the society.—Weld’s History of the Royal Society, vol. i.

DIAMOND LENSES FOR MICROSCOPES.

In recommending the employment of Diamond and other gems in the construction of Microscopes, Sir David Brewster has been met with the objection that they are too expensive for such a purpose; and, says Sir David, “they certainly are for instruments intended merely to instruct and amuse. But if we desire to make great discoveries, to unfold secrets yet hid in the cells of plants and animals, we must not grudge even a diamond to reveal them. If Mr. Cooper and Sir James South have given a couple of thousand pounds a piece for a refracting telescope, in order to study what have been miscalled ‘dots’ and ‘lumps’ of light on the sky; and if Lord Rosse has expended far greater sums on a reflecting telescope for analysing what has been called ‘sparks of mud and vapour’ encumbering the azure purity of the heavens,—why should not other philosophers open their purse, if they have one, and other noblemen sacrifice some of their household jewels, to resolve the microscopic structures of our own real world, and disclose secrets which the Almighty must have intended that we should know?”—Proceedings of the British Association, 1857.

THE EYE AND THE BRAIN SEEN THROUGH A MICROSCOPE.

By a microscopic examination of the retina and optic nerve and the brain, M. Bauer found them to consist of globules of 1/2800th to 1/4000th an inch diameter, united by a transparent viscid and coagulable gelatinous fluid.

MICROSCOPICAL EXAMINATION OF THE HAIR.

If a hair be drawn between the finger and thumb, from the end to the root, it will be distinctly felt to give a greater resistance and a different sensation to that which is experienced when drawn the opposite way: in consequence, if the hair be rubbed between the fingers, it will only move one way (travelling in the direction of a line drawn from its termination to its origin from the head or body), so that each extremity may thus be easily distinguished, even in the dark, by the touch alone.

The mystery is resolved by the achromatic microscope. A hair viewed on a dark ground as an opaque object with a high power, not less than that of a lens of one-thirtieth of an inch focus, and dully illuminated by a cup, the hair is seen to be indented with teeth somewhat resembling those of a coarse round rasp, but extremely irregular and rugged: as these incline all in one direction, like those of a common file, viz. from the origin of the hair towards its extremity, it sufficiently explains the above singular property.