Arago calls to mind, that with a 6000-fold magnifying power, which nevertheless could not be applied to the moon with proportionate results, the mountains upon the moon would appear to us just as Mont Blanc does to the naked eye when seen from the Lake of Geneva.
We sometimes observe more than half the surface of the moon, the eastern and northern edges being more visible at one time, and the western or southern at another. By means of this libration we are enabled to see the annular mountain Malapert (which occasionally conceals the moon’s south pole), the arctic landscape round the crater of Gioja, and the large gray plane near Endymion, which conceals in superficial extent the mare vaporum.
Three-sevenths of the moon are entirely concealed from our observation; and must always remain so, unless some new and unexpected disturbing causes come into play.—Humboldt.
The first object to which Galileo directed his telescope was the mountainous parts of the moon, when he showed how their summits might be measured: he found in the moon some circular districts surrounded on all sides by mountains similar to the form of Bohemia. The measurements of the mountains were made by the method of the tangents of the solar ray. Galileo, as Helvetius did still later, measured the distance of the summit of the mountains from the boundary of the illuminated portion at the moment when the mountain summit was first struck by the solar ray. Humboldt found no observations of the lengths of the shadows of the mountains: the summits were “much higher than the mountains on our earth.” The comparison is remarkable, since, according to Riccioli, very exaggerated ideas of the height of our mountains were then entertained. Galileo like all other observers up to the close of the eighteenth century, believed in the existence of many seas and of a lunar atmosphere.
THE MOON AND THE WEATHER.
The only influence of the Moon on the Weather of which we have any decisive evidence is the tendency to disappearance of clouds under the full moon, which Sir John Herschel refers to its heat being much more readily absorbed in traversing transparent media than direct solar heat, and being extinguished in the upper regions of our atmosphere, never reaches the surface of the atmosphere at all.
THE MOON’S ATTRACTION.
Mr. G. P. Bond of Cambridge, by some investigations to ascertain whether the Attraction of the Moon has any effect upon the motion of a pendulum, and consequently upon the rate of a clock, has found the last to be changed to the amount of 9/1000 of a second daily. At the equator the moon’s attraction changes the weight of a body only 1/7000000 of the whole; yet this force is sufficient to produce the vast phenomena of the tides!
It is no slight evidence of the importance of analysis, that Laplace’s perfect theory of tides has enabled us in our astronomical ephemerides to predict the height of spring-tides at the periods of new and full moon, and thus put the inhabitants of the sea on their guard against the increased danger attending the lunar revolutions.