LIGHT OF A STAR SIXTEENFOLD THAT OF THE SUN.

The bright star in the constellation of the Lyre, termed Vega, is the brightest in the northern hemisphere; and the combined researches of Struve, father and son, have found that the distance of this star from the earth is no less than 130 billions of miles! Light travelling at the rate of 192 thousand miles in a second consequently occupies twenty-one years in passing from this star to the earth. Now it has been found, by comparing the light of Vega with the light of the sun, that if the latter were removed to the distance of 130 billions of miles, his apparent brightness would not amount to more than the sixteenth part of the apparent brightness of Vega. We are therefore warranted in concluding that the light of Vega is equal to that of sixteen suns.

DIVERSITIES OF THE PLANETS.

In illustration of the great diversity of the physical peculiarities and probable condition of the planets, Sir John Herschel describes the intensity of solar radiation as nearly seven times greater on Mercury than on the earth, and on Uranus 330 times less; the proportion between the two extremes being that of upwards of 2000 to 1. Let any one figure to himself, (adds Sir John,) the condition of our globe were the sun to be septupled, to say nothing of the greater ratio; or were it diminished to a seventh, or to a 300th of its actual power! Again, the intensity of gravity, or its efficacy in counteracting muscular power and repressing animal activity, on Jupiter is nearly two-and-a-half times that on the earth; on Mars not more than one-half; on the moon one-sixth; and on the smaller planets probably not more than one-twentieth; giving a scale of which the extremes are in the proportion of sixty to one. Lastly, the density of Saturn hardly exceeds one-eighth of the mean density of the earth, so that it must consist of materials not much heavier than cork.

Jupiter is eleven times, Saturn ten times, Uranus five times, and Neptune nearly six times, the diameter of our earth.

These four bodies revolve in space at such distances from the sun, that if it were possible to start thence for each in succession, and to travel at the railway speed of 33 miles per hour, the traveller would reach

Jupiter in 1712 years
Saturn 3113
Uranus 6226
Neptune 9685

If, therefore, a person had commenced his journey at the period of the Christian era, he would now have to travel nearly 1300 years before he would arrive at the planet Saturn; more than 4300 years before he would reach Uranus; and no less than 7800 years before he could reach the orbit of Neptune.

Yet the light which comes to us from these remote confines of the solar system first issued from the sun, and is then reflected from the surface of the planet. When the telescope is turned towards Neptune, the observer’s eye sees the object by means of light that issued from the sun eight hours before, and which since then has passed nearly twice through that vast space which railway speed would require almost a century of centuries to accomplish.—Bouvier’s Familiar Astronomy.

Jupiter in1712years
Saturn3113
Uranus6226
Neptune9685

GRAND RESULTS OF THE DISCOVERY OF JUPITER’S SATELLITES.

This discovery, one of the first fruits of the invention of the telescope, and of Galileo’s early and happy idea of directing its newly-found powers to the examination of the heavens, forms one of the most memorable epochs in the history of astronomy. The first astronomical solution of the great problem of the longitude, practically the most important for the interests of mankind which has ever been brought under the dominion of strict scientific principles, dates immediately from this discovery. The final and conclusive establishment of the Copernican system of astronomy may also be considered as referable to the discovery and study of this exquisite miniature system, in which the laws of the planetary motions, as ascertained by Kepler, and specially that which connects their periods and distances, were specially traced, and found to be satisfactorily maintained. And (as if to accumulate historical interest on this point) it is to the observation of the eclipses of Jupiter’s satellites that we owe the grand discovery of the aberration of light, and the consequent determination of the enormous velocity of that wonderful element—192,000 miles per second. Mr. Dawes, in 1849, first noticed the existence of round, well-defined, bright spots on the belts of Jupiter. They vary in situation and number, as many as ten having been seen on one occasion. As the belts of Jupiter have been ascribed to the existence of currents analogous to our trade-winds, causing the body of Jupiter to be visible through his cloudy atmosphere, Sir John Herschel conjectures that those bright spots may possibly be insulated masses of clouds of local origin, similar to the cumuli which sometimes cap ascending columns of vapour in our atmosphere.

It would require nearly 1300 globes of the size of our earth to make one of the bulk of Jupiter. A railway-engine travelling at the rate of thirty-three miles an hour would travel round the earth in a month, but would require more than eleven months to perform a journey round Jupiter.

WAS SATURN’S RING KNOWN TO THE ANCIENTS?