It has been proved by experiment that the rapidity at the bottom of a stream is every where less than in any other part of it, and is greatest at the surface. Also, that in the middle of the stream the particles at the top move swifter than those at the sides. This slowness of the lowest and side currents is produced by friction; and when the rapidity is sufficiently great, the soil composing the sides and bottom gives way. If the water flows at the rate of three inches per second, it will tear up fine clay; six inches per second, fine sand; twelve inches per second, fine gravel; and three feet per second, stones the size of an egg.—Sir Charles Lyell.

THE ARTESIAN WELL OF GRENELLE AT PARIS.

M. Peligot has ascertained that the Water of the Artesian Well of Grenelle contains not the least trace of air. Subterranean waters ought therefore to be aerated before being used as aliment. Accordingly, at Grenelle, has been constructed a tower, from the top of which the water descends in innumerable threads, so as to present as much surface as possible to the air.

The boring of this Well by the Messrs. Mulot occupied seven years, one month, twenty-six days, to the depth of 1794½ English feet, or 194½ feet below the depth at which M. Elie de Beaumont foretold that water would be found. The sound, or borer, weighed 20,000 lb., and was treble the height of that of the dome of the Hôpital des Invalides at Paris. In May 1837, when the bore had reached 1246 feet 8 inches, the great chisel and 262 feet of rods fell to the bottom; and although these weighed five tons, M. Mulot tapped a screw on the head of the rods, and thus, connecting another length to them, after fifteen months’ labour, drew up the chisel. On another occasion, this chisel having been raised with great force, sank at one stroke 85 feet 3 inches into the chalk!

The depth of the Grenelle Well is nearly four times the height of Strasburg Cathedral; more than six times the height of the Hôpital des Invalides at Paris; more than four times the height of St. Peter’s at Rome; nearly four times and a half the height of St. Paul’s, and nine times the height of the Monument, London. Lastly, suppose all the above edifices to be piled one upon each other, from the base-line of the Well of Grenelle, and they would but reach within 11½ feet of its surface.

MM. Elie de Beaumont and Arago never for a moment doubted the final success of the work; their confidence being based on analogy, and on a complete acquaintance with the geological structure of the Paris basin, which is identical with that of the London basin beneath the London clay.

In the duchy of Luxembourg is a well the depth of which surpasses all others of the kind. It is upwards of 1000 feet more than that of Grenelle near Paris.

HOW THE GULF-STREAM REGULATES THE TEMPERATURE OF LONDON.

Great Britain is almost exactly under the same latitude as Labrador, a region of ice and snow. Apparently, the chief cause of the remarkable difference between the two climates arises from the action of the great oceanic Gulf-Stream, whereby this country is kept constantly encircled with waters warmed by a West-Indian sun.

Were it not for this unceasing current from tropical seas, London, instead of its present moderate average winter temperature of 6° above the freezing-point, might for many months annually be ice-bound by a settled cold of 10° to 30° below that point, and have its pleasant summer months replaced by a season so short as not to allow corn to ripen, or only an alpine vegetation to flourish.

Nor are we without evidence afforded by animal life of a greater cold having prevailed in this country at a late geological period. One case in particular occurs within eighty miles of London, at the village of Chillesford, near Woodbridge, where, in a bed of clayey sand of an age but little (geologically speaking) anterior to the London gravel, Mr. Prestwich has found a group of fossil shells in greater part identical with species now living in the seas of Greenland and of similar latitudes, and which must evidently, from their perfect condition and natural position, have existed in the place where they are now met with.—Lectures on the Geology of Clapham, &c. by Joseph Prestwich, A.R.S., F.G.S.

SOLVENT ACTION OF COMMON SALT AT HIGH TEMPERATURES.