THE GREAT EARTHQUAKE OF LISBON.
The eloquent Humboldt remarks, that the activity of an igneous mountain, however terrific and picturesque the spectacle may be which it presents to our contemplation, is always limited to a very small space. It is far otherwise with earthquakes, which, although scarcely perceptible to the eye, nevertheless simultaneously propagate their waves to a distance of many thousand miles. The great earthquake which destroyed the city of Lisbon, November 1st, 1755, was felt in the Alps, on the coast of Sweden, into the Antilles, Antigua, Barbadoes, and Martinique; in the great Canadian lakes, in Thuringia, in the flat country of northern Germany, and in the small inland lakes on the shores of the Baltic. Remote springs were interrupted in their flow,—a phenomenon attending earthquakes which had been noticed among the ancients by Demetrius the Callatian. The hot springs of Töplitz dried up and returned, inundating every thing around, and having their waters coloured with iron ochre. At Cadiz, the sea rose to an elevation of sixty-four feet; while in the Antilles, where the tide usually rises only from twenty-six to twenty-eight inches, it suddenly rose about twenty feet, the water being of an inky blackness. It has been computed that, on November 1st, 1755, a portion of the earth’s surface four times greater than that of Europe was simultaneously shaken.[31] As yet there is no manifestation of force known to us (says the vivid denunciation of the philosopher), including even the murderous invention of our own race, by which a greater number of people have been killed in the short space of a few minutes: 60,000 were destroyed in Sicily in 1693, from 30,000 to 40,000 in the earthquake of Riobamba in 1797, and probably five times as many in Asia Minor and Syria under Tiberius and Justinian the elder, about the years 19 and 526.
GEOLOGICAL AGE OF THE DIAMOND.
The discovery of Diamonds in Russia, far from the tropical zone, has excited much interest among geologists. In the detritus on the banks of the Adolfskoi, no fewer than forty diamonds have been found in the gold alluvium, only twenty feet above the stratum in which the remains of mammoths and rhinoceroses are found. Hence Humboldt has concluded that the formation of gold-veins, and consequently of diamonds, is comparatively of recent date, and scarcely anterior to the destruction of the mammoths. Sir Roderick Murchison and M. Verneuil have been led to the same result by different arguments.[32]
WHAT WAS ADAMANT?
Professor Tennant replies, that the Adamant described by Pliny was a sapphire, as proved by its form, and by the fact that when struck on an anvil by a hammer it would make an indentation in the metal. A true diamond, under such circumstances, would fly into a thousand pieces.
WHAT IS COAL?
The whole evidence we possess as to the nature of Coal proves it to have been originally a mass of vegetable matter. Its microscopical characters point to its having been formed on the spot in which we find it, to its being composed of vegetable tissues of various kinds, separated and changed by maceration, pressure, and chemical action, and to the introduction of its earthy matter, in a large number of instances, in a state of solution or fine molecular subdivision. Dr. Redfern, from whose communication to the British Association we quote, knows nothing to countenance the supposition that our coal-beds are mainly formed of coniferous wood, because the structures found in mother-coal, or the charcoal layer, have not the character of the glandular tissue of such wood, as has been asserted.
Geological research has shown that the immense forests from which our coal is formed teemed with life. A frog as large as an ox existed in the swamps, and the existence of insects proves that the higher order of organic creation flourished at this epoch.
It has been calculated that the available coal-beds in Lancashire amount in weight to the enormous sum of 8,400,000,000 tons. The total annual consumption of this coal, it has been estimated, amounts to 3,400,120 tons; hence it is inferred that the coal-beds of Lancashire, at the present rate of consumption, will last 2470 years. Making similar calculations for the coal-fields of South Wales, the north of England, and Scotland, it will readily be perceived how ridiculous were the forebodings which lecturing geologists delighted to indulge in a few years ago.