What are the great wonders, the great sources of man’s material strength, wealth, and comfort in modern times? The Railway, with its mile-long trains of men and merchandise, moving with the velocity of the wind, and darting over chasms a thousand feet wide; the Electric Telegraph, along which man’s thoughts travel with the velocity of light, and girdle the earth more quickly than Puck’s promise to his master; the contrivance by which the Magnet, in the very middle of a strip of iron, is still true to the distant pole, and remains a faithful guide to the mariner; the Electrotype process, by which a metallic model of any given object, unerringly exact, grows into being like a flower. Now, all these wonders are the result of recent and profound discoveries in theoretical science. The Locomotive Steam-engine, and the Steam-engine in all its other wonderful and invaluable applications, derives its efficacy from the discoveries, by Watt and others, of the laws of steam. The Railway Bridge is not made strong by mere accumulation of materials, but by the most exact and careful scientific examination of the means of giving the requisite strength to every part, as in the great example of Mr. Stephenson’s Britannia Bridge over the Menai Strait. The Correction of the Magnetic Needle in iron ships it would have been impossible for Mr. Airy to secure without a complete theoretical knowledge of the laws of Magnetism. The Electric Telegraph and the Electrotype process include in their principles and mechanism the most complete and subtle results of electrical and magnetical theory.—Edinburgh Review, No. 216.

PERPETUITY OF IMPROVEMENT.

In the progress of society all great and real improvements are perpetuated: the same corn which, four thousand years ago, was raised from an improved grass by an inventor worshiped for two thousand years in the ancient world under the name of Ceres, still forms the principal food of mankind; and the potato, perhaps the greatest benefit that the old has derived from the new world, is spreading over Europe, and will continue to nourish an extensive population when the name of the race by whom it was first cultivated in South America is forgotten.—Sir H. Davy.

THE EARLIEST ENGLISH SCIENTIFIC TREATISE.

Geoffrey Chaucer, the poet, wrote a treatise on the Astrolabe for his son, which is the earliest English treatise we have met with on any scientific subject. It was not completed; and the apologies which Chaucer makes to his own child for writing in English are curious; while his inference that his son should therefore “pray God save the king that is lord of this language,” is at least as loyal as logical.

PHILOSOPHERS’ FALSE ESTIMATES OF THEIR OWN LABOURS.

Galileo was confident that the most important part of his contributions to the knowledge of the solar system was his Theory of the Tides—a theory which all succeeding astronomers have rejected as utterly baseless and untenable. Descartes probably placed far above his beautiful explanation of the rainbow, his à priori theory of the existence of the vortices which caused the motion of the planets and satellites. Newton perhaps considered as one of the best parts of his optical researches his explanation of the natural colour of bodies, which succeeding optical philosophers have had to reject; and he certainly held very strongly the necessity of a material cause for gravity, which his disciples have disregarded. Davy looked for his greatest triumph in the application of his discoveries to prevent the copper bottoms of ships from being corroded. And so in other matters.—Edinburgh Review, No. 216.

RELICS OF GENIUS.

Professor George Wilson, in a lecture to the Scottish Society of Arts, says: “The spectacle of these things ministers only to the good impulses of humanity. Isaac Newton’s telescope at the Royal Society of London; Otto Guericke’s air-pump in the Library at Berlin; James Watt’s repaired Newcomen steam-engine in the Natural-Philosophy class-room of the College at Glasgow; Fahrenheit’s thermometer in the corresponding class-room of the University of Edinburgh; Sir H. Davy’s great voltaic battery at the Royal Institution, London, and his safety-lamp at the Royal Society; Joseph Black’s pneumatic trough in Dr. Gregory’s possession; the first wire which Faraday made rotate electro-magnetically, at St. Bartholomew’s Hospital; Dalton’s atomic models at Manchester; and Kemp’s liquefied gases in the Industrial Museum of Scotland,—are alike personal relics, historical monuments, and objects of instruction, which grow more and more precious every year, and of which we never can have too many.”

THE ROYAL SOCIETY: THE NATURAL AND SUPERNATURAL.