The climate of the Khasia mountains, which lie north-east from Calcutta, and are separated by the valley of the Burrampooter River from the Himalaya range, is remarkable for the inordinate fall of rain—the greatest, it is said, which has ever been recorded. Mr. Yule, an English gentleman, established that in the single month of August 1841 there fell 264 inches of rain, or 22 feet, of which 12½ feet fell in the space of five consecutive days. This astonishing fact is confirmed by two other English travellers, who measured 30 inches of rain in twenty-four hours, and during seven months above 500 inches. This great rain-fall is attributed to the abruptness of the mountains which face the Bay of Bengal, and the intervening flat swamps 200 miles in extent. The district of the excessive rain is extremely limited; and but a few degrees farther west, rain is said to be almost unknown, and the winter falls of snow to seldom exceed two inches.

HOW DOES THE NORTH WIND DRIVE AWAY RAIN?

We may liken it to a wet sponge, and the decrease of temperature to the hand that squeezes that sponge. Finally, reaching the cold latitudes, all the moisture that a dew-point of zero, and even far below, can extract, is wrung from it; and this air then commences “to return according to his circuits” as dry atmosphere. And here we can quote Scripture again: “The north wind driveth away rain.” This is a meteorological fact of high authority and great importance in the study of the circulation of the atmosphere.—Maury.

SIZE OF RAIN-DROPS.

The Drops of Rain vary in their size, perhaps from the 25th to the ¼ of an inch in diameter. In parting from the clouds, they precipitate their descent till the increasing resistance opposed by the air becomes equal to their weight, when they continue to fall with uniform velocity. This velocity is, therefore, in a certain ratio to the diameter of the drops; hence thunder and other showers in which the drops are large pour down faster than a drizzling rain. A drop of the 25th part of an inch, in falling through the air, would, when it had arrived at its uniform velocity, only acquire a celerity of 11½ feet per second; while one of ¼ of an inch would equal a velocity of 33½ feet.—Leslie.

RAINLESS DISTRICTS.

In several parts of the world there is no rain at all. In the Old World there are two districts of this kind: the desert of Sahara in Africa, and in Asia part of Arabia, Syria, and Persia; the other district lies between north latitude 30° and 50°, and between 75° and 118° of east longitude, including Thibet, Gobiar Shama, and Mongolia. In the New World the rainless districts are of much less magnitude, occupying two narrow strips on the shores of Peru and Bolivia, and on the coast of Mexico and Guatemala, with a small district between Trinidad and Panama on the coast of Venezuela.

ALL THE RAIN IN THE WORLD.

The Pacific Ocean and the Indian Ocean may be considered as one sheet of water covering an area quite equal in extent to one half of that embraced by the whole surface of the earth; and the total annual fall of rain on the earth’s surface is 186,240 cubic imperial miles. Not less than three-fourths of the vapour which makes this rain comes from this waste of waters; but, supposing that only half of this quantity, that is 93,120 cubic miles of rain, falls upon this sea, and that that much at least is taken up from it again as vapour, this would give 255 cubic miles as the quantity of water which is daily lifted up and poured back again into this expanse. It is taken up at one place, and rained down at another; and in this process, therefore, we have agencies for multitudes of partial and conflicting currents, all, in their set strength, apparently as uncertain as the winds.

The better to appreciate the operation of such agencies in producing currents in the sea, imagine a district of 255 square miles to be set apart in the midst of the Pacific Ocean as the scene of operations for one day; then conceive a machine capable of pumping up in the twenty-four hours all the water to the depth of one mile in this district. The machine must not only pump up and bear off this immense quantity of water, but it must discharge it again into the sea on the same day, but at some other place.