Let us pass from this illustration of constructive power to another of a different kind. When a solution of common salt is slowly evaporated, the water which holds the salt in solution disappears, but the salt itself remains behind. At a certain stage of concentration the salt can no longer retain the liquid form; its particles, or molecules, as they are called, begin to deposit themselves as minute solids, so minute, indeed, as to defy all microscopic power. As evaporation continues solidification goes on, and we finally obtain, through the clustering together of innumerable molecules, a finite crystalline mass of a definite form. What is this form? It sometimes seems a mimicry of the architecture of Egypt. We have little pyramids built by the salt, terrace above terrace from base to apex, forming a series of steps resembling those up which the Egyptian traveller is dragged by his guides. The human mind is as little disposed to look unquestioning at these pyramidal salt-crystals as to look at the pyramids of Egypt without inquiring whence they came. How, then, are those salt-pyramids built up?

Guided by analogy, you may, if you like, suppose that, swarming among the constituent molecules of the salt, there is an invisible population, guided and coerced by some invisible master, and placing the atomic blocks in their positions. This, however, is not the scientific idea, nor do I think your good sense will accept it as a likely one. The scientific idea is that the molecules act upon each other without the intervention of slave labour; that they attract each other and repel each other at certain definite points, or poles, and in certain definite directions; and that the pyramidal form is the result of this play of attraction and repulsion. While, then, the blocks of Egypt were laid down by a power external to themselves, these molecular blocks of salt are self-posited, being fixed in their places by the forces with which they act upon each other.

I take common salt as an illustration because it is so familiar to us all; but any other crystalline substance would answer my purpose equally well. Everywhere, in fact, throughout inorganic nature, we have this formative power, as Fichte would call it—this structural energy ready to come into play, and build the ultimate particles of matter into definite shapes. The ice of our winters and of our polar regions is its handywork, and so equally are the quartz, felspar, and mica of our rocks. Our chalk-beds are for the most part composed of minute shells, which are also the product of structural energy; but behind the shell, as a whole, lies a more remote and subtle formative act. These shells are built up of little crystals of calc-spar, and to form these crystals the structural force had to deal with the intangible molecules of carbonate of lime. This tendency on the part of matter to organize itself, to grow into shape, to assume definite forms in obedience to the definite action of force, is, as I have said, all-pervading. It is in the ground on which you tread, in the water you drink, in the air you breathe. Incipient life, as it were, manifests itself throughout the whole of what we call inorganic nature.

The forms of the minerals resulting from this play of polar forces are various, and exhibit different degrees of complexity. Men of science avail themselves of all possible means of exploring their molecular architecture. For this purpose they employ in turn as agents of exploration, light, heat, magnetism, electricity, and sound. Polarized light is especially useful and powerful here. A beam of such light, when sent in among the molecules of a crystal, is acted on by them, and from this action we infer with more or less of clearness the manner in which the molecules are arranged. That differences, for example, exist between the inner structure of rock salt and crystallized sugar or sugar-candy, is thus strikingly revealed. These differences may be made to display themselves in chromatic phenomena of great splendour, the play of molecular force being so regulated as to remove some of the coloured constituents of white light, and to leave others with increased intensity behind.

And now let us pass from what we are accustomed to regard as a dead mineral to a living grain of corn. When it is examined by polarized light, chromatic phenomena similar to those noticed in crystals are observed. And why? Because the architecture of the grain resembles the architecture of the crystal. In the grain also the molecules are set in definite positions, and in accordance with their arrangement they act upon the light. But what has built together the molecules of the corn? I have already said regarding crystalline architecture that you may, if you please, consider the atoms and molecules to be placed in position by a power external to themselves. The same hypothesis is open to you now. But if in the case of crystals you have rejected this notion of an external architect, I think you are bound to reject it now, and to conclude that the molecules of the corn are self-posited by the forces with which they act upon each other. It would be poor philosophy to invoke an external agent in the one case and to reject it in the other.

Instead of cutting our grain of corn into slices and subjecting it to the action of polarized light, let us place it in the earth and subject it to a certain degree of warmth. In other words, let the molecules, both of the corn and of the surrounding earth, be kept in that state of agitation which we call warmth. Under these circumstances, the grain and the substances which surround it interact, and a definite molecular architecture is the result. A bud is formed; this bud reaches the surface, where it is exposed to the sun’s rays, which are also to be regarded as a kind of vibratory motion. And as the motion of common heat with which the grain and the substances surrounding it were first endowed, enabled the grain and these substances to exercise their attractions and repulsions, and thus to coalesce in definite forms, so the specific motion of the sun’s rays now enables the green bud to feed upon the carbonic acid and the aqueous vapour of the air. The bud appropriates those constituents of both for which it has an elective attraction, and permits the other constituent to resume its place in the air. Thus the architecture is carried on. Forces are active at the root, forces are active in the blade, the matter of the earth and the matter of the atmosphere are drawn towards both, and the plant augments in size. We have in succession, the bud, the stalk, the ear, the full corn in the ear; the cycle of molecular action being completed by the production of grains similar to that with which the process began.

Now there is nothing in this process which necessarily eludes the conceptive or imagining power of the purely human mind. An intellect the same in kind as our own would, if only sufficiently expanded, be able to follow the whole process from beginning to end. It would see every molecule placed in its position by the specific attractions and repulsions exerted between it and other molecules, the whole process and its consummation being an instance of the play of molecular force. Given the grain and its environment, the purely human intellect might, if sufficiently expanded, trace out à priori every step of the process of growth, and by the application of purely mechanical principles demonstrate that the cycle must end, as it is seen to end, in the reproduction of forms like that with which it began. A similar necessity rules here to that which rules the planets in their circuits round the sun.

You will notice that I am stating my truth strongly, as at the beginning we agreed it should be stated. But I must go still further, and affirm that in the eye of science the animal body is just as much the product of molecular force as the stalk and ear of corn, or as the crystal of salt or sugar. Many of the parts of the body are obviously mechanical. Take the human heart, for example, with its system of valves, or take the exquisite mechanism of the eye or hand. Animal heat, moreover, is the same in kind as the heat of a fire, being produced by the same chemical process. Animal motion, too, is as directly derived from the food of the animal, as the motion of Trevethyck’s walking-engine from the fuel in its furnace. As regards matter, the animal body creates nothing; as regards force, it creates nothing. Which of you by taking thought can add one cubit to his stature? All that has been said, then, regarding the plant may be restated with regard to the animal. Every particle that enters into the composition of a muscle, a nerve, or a bone, has been placed in its position by molecular force. And unless the existence of law in these matters be denied, and the element of caprice introduced, we must conclude that, given the relation of any molecule of the body to its environment, its position in the body might be determined mathematically. Our difficulty is not with the quality of the problem, but with its complexity; and this difficulty might be met by the simple expansion of the faculties which we now possess. Given this expansion, with the necessary molecular data, and the chick might be deduced as rigorously and as logically from the egg as the existence of Neptune was deduced from the disturbances of Uranus, or as conical refraction was deduced from the undulatory theory of light.

You see I am not mincing matters, but avowing nakedly what many scientific thinkers more or less distinctly believe. The formation of a crystal, a plant, or an animal, is in their eyes a purely mechanical problem, which differs from the problems of ordinary mechanics in the smallness of the masses and the complexity of the processes involved. Here you have one half of our dual truth; let us now glance at the other half. Associated with this wonderful mechanism of the animal body we have phenomena no less certain than those of physics, but between which and the mechanism we discern no necessary connexion. A man, for example, can say I feel, I think, I love; but how does consciousness infuse itself into the problem? The human brain is said to be the organ of thought and feeling; when we are hurt the brain feels it, when we ponder it is the brain that thinks, when our passions or affections are excited it is through the instrumentality of the brain. Let us endeavour to be a little more precise here. I hardly imagine there exists a profound scientific thinker, who has reflected upon the subject, unwilling to admit the extreme probability of the hypothesis, that for every fact of consciousness, whether in the domain of sense, of thought, or of emotion, a certain definite molecular condition is set up in the brain; who does not hold this relation of physics to consciousness to be invariable, so that, given the state of the brain, the corresponding thought or feeling might be inferred; or given the thought or feeling, the corresponding state of the brain might be inferred.

But how inferred? It is at bottom not a case of logical inference at all, but of empirical association. You may reply that many of the inferences of science are of this character; the inference, for example, that an electric current of a given direction will deflect a magnetic needle in a definite way; but the cases differ in this, that the passage from the current to the needle, if not demonstrable, is thinkable, and that we entertain no doubt as to the final mechanical solution of the problem. But the passage from the physics of the brain to the corresponding facts of consciousness is unthinkable. Granted that a definite thought, and a definite molecular action in the brain occur simultaneously; we do not possess the intellectual organ, nor apparently any rudiment of the organ, which would enable us to pass, by a process of reasoning, from the one to the other. They appear together, but we do not know why. Were our minds and senses so expanded, strengthened, and illuminated as to enable us to see and feel the very molecules of the brain; were we capable of following all their motions, all their groupings, all their electric discharges, if such there be; and were we intimately acquainted with the corresponding states of thought and feeling, we should be as far as ever from the solution of the problem. ‘How are these physical processes connected with the facts of consciousness?’ The chasm between the two classes of phenomena would still remain intellectually impassable. Let the consciousness of love, for example, be associated with a right-handed spiral motion of the molecules of the brain, and the consciousness of hate with a left-handed spiral motion. We should then know when we love that the motion is in one direction, and when we hate that the motion is in the other; but the ‘WHY?’ would remain as unanswerable as before.