And now he gradually abolishes those so-called poles, to the attraction of which electric decomposition had been ascribed. He connected a piece of turmeric paper moistened with the sulphate of soda with the positive conductor of his machine; then he placed a metallic point in connection with his discharging train opposite the moist paper, so that the electricity should discharge through the air towards the point. The turning of the machine caused the corners of the piece of turmeric paper opposite to the point to turn brown, thus declaring the presence of alkali. He changed the turmeric for litmus paper, and placed it, not in connection with his conductor, but with his discharging train, a metallic point connected with the conductor being fixed at a couple of inches from the paper; on turning the machine, acid was liberated at the edges and corners of the litmus. He then placed a series of pointed pieces of paper, each separate piece being composed of two halves, one of litmus and the other of turmeric paper, and all moistened with sulphate of soda, in the line of the current from the machine. The pieces of paper were separated from each other by spaces of air. The machine was turned; and it was always found that at the point where the electricity entered the paper, litmus was reddened, and at the point where it quitted the paper, turmeric was browned. 'Here,' he urges, 'the poles are entirely abandoned, but we have still electrochemical decomposition.' It is evident to him that instead of being attracted by the poles, the bodies separated are ejected by the current. The effects thus obtained with poles of air he also succeeded in obtaining with poles of water. The advance in Faraday's own ideas made at this time is indicated by the word 'ejected.' He afterwards reiterates this view: the evolved substances are expelled from the decomposing body, and 'not drawn out by an attraction.
Having abolished this idea of polar attraction, he proceeds to enunciate and develop a theory of his own. He refers to Davy's celebrated Bakerian Lecture, given in 1806, which he says 'is almost entirely occupied in the consideration of electrochemical decompositions.' The facts recorded in that lecture Faraday regards as of the utmost value. But 'the mode of action by which the effects take place is stated very generally; so generally, indeed, that probably a dozen precise schemes of electrochemical action might be drawn up, differing essentially from each other, yet all agreeing with the statement there given.'
It appears to me that these words might with justice be applied to Faraday's own researches at this time. They furnish us with results of permanent value; but little help can be found in the theory advanced to account for them. It would, perhaps, be more correct to say that the theory itself is hardly presentable in any tangible form to the intellect. Faraday looks, and rightly looks, into the heart of the decomposing body itself; he sees, and rightly sees, active within it the forces which produce the decomposition, and he rejects, and rightly rejects, the notion of external attraction; but beyond the hypothesis of decompositions and recompositions, enunciated and developed by Grothuss and Davy, he does not, I think, help us to any definite conception as to how the force reaches the decomposing mass and acts within it. Nor, indeed, can this be done, until we know the true physical process which underlies what we call an electric current.
Faraday conceives of that current as 'an axis of power having contrary forces exactly equal in amount in opposite directions'; but this definition, though much quoted and circulated, teaches us nothing regarding the current. An 'axis' here can only mean a direction; and what we want to be able to conceive of is, not the axis along which the power acts, but the nature and mode of action of the power itself. He objects to the vagueness of De la Rive; but the fact is, that both he and De la Rive labour under the same difficulty. Neither wishes to commit himself to the notion of a current compounded of two electricities flowing in two opposite directions: but the time had not come, nor is it yet come, for the displacement of this provisional fiction by the true mechanical conception. Still, however indistinct the theoretic notions of Faraday at this time may be, the facts which are rising before him and around him are leading him gradually, but surely, to results of incalculable importance in relation to the philosophy of the voltaic pile.
He had always some great object of research in view, but in the pursuit of it he frequently alighted on facts of collateral interest, to examine which he sometimes turned aside from his direct course. Thus we find the series of his researches on electrochemical decomposition interrupted by an inquiry into 'the power of metals and other solids, to induce the combination of gaseous bodies.' This inquiry, which was received by the Royal Society on Nov. 30, 1833, though not so important as those which precede and follow it, illustrates throughout his strength as an experimenter. The power of spongy platinum to cause the combination of oxygen and hydrogen had been discovered by Dobereiner in 1823, and had been applied by him in the construction of his well-known philosophic lamp. It was shown subsequently by Dulong and Thenard that even a platinum wire, when perfectly cleansed, may be raised to incandescence by its action on a jet of cold hydrogen.
In his experiments on the decomposition of water, Faraday found that the positive platinum plate of the decomposing cell possessed in an extraordinary degree the power of causing oxygen and hydrogen to combine. He traced the cause of this to the perfect cleanness of the positive plate. Against it was liberated oxygen, which, with the powerful affinity of the 'nascent state,' swept away all impurity from the surface against which it was liberated. The bubbles of gas liberated on one of the platinum plates or wires of a decomposing cell are always much smaller, and they rise in much more rapid succession than those from the other. Knowing that oxygen is sixteen times heavier than hydrogen, I have more than once concluded, and, I fear, led others into the error of concluding, that the smaller and more quickly rising bubbles must belong to the lighter gas. The thing appeared so obvious that I did not give myself the trouble of looking at the battery, which would at once have told me the nature of the gas. But Faraday would never have been satisfied with a deduction if he could have reduced it to a fact. And he has taught me that the fact here is the direct reverse of what I supposed it to be. The small bubbles are oxygen, and their smallness is due to the perfect cleanness of the surface on which they are liberated. The hydrogen adhering to the other electrode swells into large bubbles, which rise in much slower succession; but when the current is reversed, the hydrogen is liberated upon the cleansed wire, and then its bubbles also become small.
Footnotes to Chapter 5
(1) Buff finds the quantity of electricity associated with
one milligramme of hydrogen in water to be equal to 45,480
charges of a Leyden jar, with a height of 480 millimetres,
and a diameter of 160 millimetres. Weber and Kohlrausch
have calculated that, if the quantity of electricity
associated with one milligramme of hydrogen in water were
diffused over a cloud at a height of 1000 metres above the
earth, it would exert upon an equal quantity of the opposite
electricity at the earth's surface an attractive force of
2,268,000 kilogrammes. (Electrolytische Maasbestimmungen,
1856, p. 262.)
(2) Faraday, sa Vie et ses Travaux, p. 20.