-----

With the view of preserving thought continuous throughout this discourse, and of preventing either failure of knowledge or of memory, from causing any rent in our picture, I here propose to run rapidly over a bit of ground which is probably familiar to most of you, but which I am anxious to make familiar to you all. The waves generated in the aether by the swinging atoms of luminous bodies are of different lengths and amplitudes. The amplitude is the width of swing of the individual particles of the waves. In water-waves it is the vertical height of the crest above the trough, while the length of the wave is the horizontal distance between two consecutive crests. The aggregate of waves emitted by the sun may be broadly divided into two classes: the one class competent, the other incompetent, to excite vision. But the light-producing waves differ markedly among themselves in size, form, and force. The length of the largest of these waves is about twice that of the smallest, but the amplitude of the largest is probably a hundred times that of the smallest. Now the force or energy of the wave, which, expressed with reference to sensation, means the intensity of the light, is proportional to the square of the amplitude. Hence the amplitude being one-hundredfold, the energy of the largest light-giving waves would be ten-thousandfold that of the smallest. This is not improbable. I use these figures not with a view to numerical accuracy, but to give you definite ideas of the differences that probably exist among the light-giving waves. And if we take the whole range of solar radiation into account — its non-visual as well as its visual waves — I think it probable that the force, or energy, of the largest wave is more than a million times that of the smallest.

Turned into their equivalents of sensation, the different light-waves produce different colours. Red, for example, is produced by the largest waves, violet by the smallest, while green is produced by a wave of intermediate length and amplitude. On entering from air into a more highly refracting substance, such as glass or water, or the sulphide of carbon, all the waves are retarded, but the smallest ones most. This furnishes a means of separating the different classes of waves from each other; in other words, of analysing the light.

Sent through a refracting prism, the waves of the sun are turned aside in different degrees from their direct course, the red least, the violet most. They are virtually pulled asunder, and they paint upon a white screen placed to receive them 'the solar spectrum.' Strictly speaking, the spectrum embraces an infinity of colours; but the limits of language, and of our powers of distinction, cause it to be divided into seven segments: red, orange, yellow, green, blue, indigo, violet. These are the seven primary or prismatic colours.

Separately, or mixed in various proportions, the solar waves yield all the colours observed in nature and employed in art. Collectively, they give us the impression of whiteness. Pure unsifted solar light is white; and, if all the wave-constituents of such light be reduced in the same proportion, the light, though diminished in intensity, will still be white. The whiteness of snow with the sun shining upon it, is barely tolerable to the eye. The same snow under an overcast firmament is still white. Such a firmament enfeebles the light by reflecting it upwards; and when we stand above a cloud-field — on an Alpine summit, for instance, or on the top of Snowdon — and see, in the proper direction, the sun shining on the clouds below us, they appear dazzlingly white. Ordinary clouds, in fact, divide the solar light impinging on them into two parts — a reflected part and a transmitted part, in each of which the proportions of wave-motion which produce the impression of whiteness are sensibly preserved.

It will be understood that the condition of whiteness would fail if all the waves were diminished equally, or by the same absolute quantity. They must be reduced proportionately, instead of equally. If by the act of reflection the waves of red light are split into exact halves, then, to preserve the light white, the waves of yellow, orange, green, and blue, must also be split into exact halves. In short, the reduction must take place, not by absolutely equal quantities, but by equal fractional parts. In white light the preponderance, as regards energy, of the larger over the smaller waves must always be immense. Were the case otherwise, the visual correlative, blue, of the smaller waves would have the upper hand in our sensations.

Not only are the waves of aether reflected by clouds, by solids, and by liquids, but when they pass from light air to dense, or from dense air to light, a portion of the wave-motion is always reflected. Now our atmosphere changes continually in density from top to bottom. It will help our conceptions if we regard it as made up of a series of thin concentric layers, or shells of air, each shell being of the same density throughout, a small and sudden change of density occurring in passing from shell to shell. Light would be reflected at the limiting surfaces of all these shells, and their action would be practically the same as that of the real atmosphere. And now I would ask your imagination to picture this act of reflection. What must become of the reflected light? The atmospheric layers turn their convex surfaces towards the sun; they are so many convex mirrors of feeble power; and you will immediately perceive that the light regularly reflected from these surfaces cannot reach the earth at all, but is dispersed in space. Light thus reflected cannot, therefore, be the light of the sky.

But, though the sun's light is not reflected in this fashion from the aerial layers to the earth, there is indubitable evidence to show that the light of our firmament is scattered light. Proofs of the most cogent description could be here adduced; but we need only consider that we receive light at the same time from all parts of the hemisphere of heaven. The light .of the firmament comes to us across the direction of the solar rays, and even against the direction of the solar rays; and this lateral and opposing rush of wave-motion can only be due to the rebound of the waves from the air itself, or from something suspended in the air. It is also evident that, unlike the action of clouds, the solar light is not reflected by the sky in the proportions which produce white. The sky is blue, which indicates an excess of the shorter waves. In accounting for the colour of the sky, the first question suggested by analogy would undoubtedly be, Is not the air blue? The blueness of the air has, in fact, been given as a solution of the blueness of the sky. But how, if the air be blue, can the light of sunrise and sunset, which travels through vast distances of air, be yellow, orange, or even red? The passage of white solar light through a blue medium could by no possibility redden the light.

The hypothesis of a blue air is therefore untenable. In fact the agent, whatever it is, which sends us the light of the sky, exercises in so doing a dichroitic action. The light reflected is blue, the light transmitted is orange or red. A marked distinction is thus exhibited between the matter of the sky, and that of an ordinary cloud, which exercises no such dichroitic action.

By the scientific use of the imagination we may hope to penetrate this mystery. The cloud takes no note of size on the part of the waves of aether, but reflects them all alike. It exercises no selective action. Now the cause of this may be that the cloud particles are so large, in comparison with the waves of aether, as to reflect them all indifferently. A broad cliff reflects an Atlantic roller as easily as a ripple produced by a seabird's wing; and in the presence of large reflecting surfaces, the existing differences of magnitude among the waves of aether may disappear. But supposing the reflecting particles, instead of being very large, to be very small in comparison with the size of the waves. In this case, instead of the whole wave being fronted and thrown back, a small portion only is shivered off. The great mass of the wave passes over such a particle without reflection. Scatter, then, a handful of such minute foreign particles in our atmosphere, and set imagination to watch their action upon the solar waves. Waves of all sizes impinge upon the particles, and you see at every collision a portion of the impinging wave struck off; all the waves of the spectrum, from the extreme red to the extreme violet, being thus acted upon.