I stated a moment ago that the fermentation of grape-juice was spontaneous; but I was careful to add, in what sense spontaneous will appear more clearly by-and-by.' Now this is the sense meant. The wine-maker does not, like the brewer and distiller, deliberately introduce either yeast; or any equivalent of yeast, into his vats; he does not consciously sow in them any plant, or the germ of any plant; indeed, he has been hitherto in ignorance whether plants or germs of any kind have had anything to do with his operations. Still, when the fermented grape-juice is examined, the living Torula concerned in alcoholic fermentation never fails to make its appearance. How is this? If no living germ has been introduced into the wine-vat, whence comes the life so invariably developed there?

You may be disposed to reply, with Turpin and others, that in virtue of its own inherent powers, the grape-juice when brought into contact with the vivifying atmospheric oxygen, runs spontaneously and of its own accord into these low forms of life. I have not the slightest objection to this explanation, provided proper evidence can be adduced in support of it. But the evidence adduced in its favour, as far as I am acquainted with it, snaps asunder under the strain of scientific criticism. It is, as far as I can see, the evidence of men, who however keen and clever as observers, are not rigidly trained experimenters. These alone are aware of the precautions necessary in investigations of this delicate kind. In reference, then, to the life of the wine-vat, what is the decision of experiment when carried out by competent men? Let a quantity of the clear, filtered 'must' of the grape be so boiled as to destroy such germs as it may have contracted from the air or otherwise. In contact with germless air the uncontaminated must never ferments. All the materials for spontaneous generation are there, but so long as there is no seed sown, there is no life developed, and no sign of that fermentation which is the concomitant of life. Nor need you resort to a boiled liquid. The grape is sealed by its own skin against contamination from without. By an ingenious device Pasteur has extracted from the interior of the grape its pure juice, and proved that in contact with pure air it never acquires the power to ferment itself, nor to produce fermentation in other liquids. [Footnote: The liquids of the healthy animal body are also sealed from external contamination. Pure blood, for example, drawn with due precautions from the veins, will never ferment or putrefy in contact with pure air.] It is not, therefore, in the interior of the grape that the origin of the life observed in the vat is to be sought.

What then is its true origin? This is Pasteur's answer, which his well-proved accuracy renders worthy of all confidence. At the time of the vintage microscopic particles are observed adherent, both to the outer surface of the grape and of the twigs which support the grape. Brush these particles into a capsule of pure water. It is rendered turbid by the dust. Examined by a microscope, some of these minute particles are seen to present the appearance of organised cells. Instead of receiving them in water, let them be brushed into the pure inert juice of the grape. Forty-eight hours after this is done, our familiar Torula is observed budding and sprouting, the growth of the plant being accompanied by all the other signs of active fermentation. What is the inference to be drawn from this experiment? Obviously that the particles adherent to the external surface of the grape include the germs of that life which, after they have been sown in the juice, appears in such profusion. Wine is sometimes objected to on the ground that fermentation is 'artificial;' but we notice here the responsibility of nature. The ferment of the grape clings like a parasite to the surface of the grape; and the art of the wine-maker from time immemorial has consisted in bringing — and it may be added, ignorantly bringing — two things thus closely associated by nature into actual contact with each other. For thousands of years, what has been done consciously by the brewer, has been done unconsciously by the wine-grower. The one has sown his leaven just as much as the other.

Nor is it necessary to impregnate the beer-wort with yeast to provoke fermentation. Abandoned to the contact of our common air, it sooner or later ferments; but the chances are that the produce of that fermentation, instead of being agreeable, would be disgusting to the taste. By a rare accident we might get the true alcoholic fermentation, but the odds against obtaining it would be enormous. Pure air acting upon a lifeless liquid will never provoke fermentation; but our ordinary air is the vehicle of numberless germs which act as ferments when they fall into appropriate infusions. Some of them produce acidity, some putrefaction. The germs of our yeast-plant are also in the air; but so sparingly distributed that an infusion like beer-wort, exposed to the air, is almost sure to be taken possession of by foreign organisms. In fact, the maladies of beer are wholly due to the admixture of these objectionable ferments, whose forms and modes of nutrition differ materially from those of the true leaven.

Working in an atmosphere charged with the germs of these organisms, you can understand how easy it is to fall into error in studying the action of any one of them. Indeed it is only the most accomplished experimenter, who, moreover, avails himself of every means of checking his conclusions, that can walk without tripping through this land of pitfalls. Such a man the French chemist Pasteur has hitherto proved himself to be. He has taught us how to separate the commingled ferments of our air, and to study their pure individual action. Guided by him, let us fix our attention more particularly upon the growth and action of the true yeast-plant under different conditions. Let it be sown in a fermentable liquid, which is supplied with plenty of pure air. The plant will flourish in the aerated infusion, and produce large quantities of carbonic acid gas — a compound, as you know, of carbon and oxygen. The oxygen thus consumed by the plant is the free oxygen of the air, which we suppose to be abundantly supplied to the liquid. The action is so far similar to the respiration of animals, which inspire oxygen and expire carbonic acid. If we examine the liquid even when the vigour of the plant has reached its maximum, we hardly find in it a trace of alcohol. The yeast has grown and flourished, but it has almost ceased to act as a ferment. And could every individual yeast-cell seize, without any impediment, free oxygen from the surrounding liquid, it is certain that it would cease to act as a ferment altogether.

What, then, are the conditions under which the yeast-plant must be placed so that it may display its characteristic quality? Reflection on the facts already referred to suggests a reply, and rigid experiment confirms the suggestion. Consider the Alpine cherries in their closed vessel. Consider the beer in its barrel, with a single small aperture open to the air, through which it is observed not to imbibe oxygen, but to pour forth carbonic acid. Whence come the volumes of oxygen necessary to the production of this latter gas? The small quantity of atmospheric air dissolved in the wort and overlying it would be totally incompetent to supply the necessary oxygen. In no other way can the yeast-plant obtain the gas necessary for its respiration than by wrenching it from surrounding substances in which the oxygen exists, not free, but in a state of combination. It decomposes the sugar of the solution in which it grows, produces heat, breathes forth carbonic acid gas, and one of the liquid products of the decomposition is our familiar alcohol. The act of fermentation, then, is a result of the effort of the little plant to maintain its respiration by means of combined oxygen, when its supply of free oxygen is cut off. As defined by Pasteur, fermentation is life without air.

But here the knowledge of that thorough investigator comes to our aid to warn us against errors which have 'been committed over and over again. It is not all yeast-cells that can thus live without air and provoke fermentation. They must be young cells which have caught their vegetative vigour from contact with free oxygen. But once possessed of this vigour the yeast may be transplanted into a saccharine infusion absolutely purged of air, where it will continue to live at the expense of the oxygen, carbon, and other constituents of the infusion. Under these new conditions its life, as a plant, will be by no means so vigorous as when it had a supply of free oxygen, but its action as a ferment will be indefinitely greater.

Does the yeast-plant stand alone in its power of provoking alcoholic fermentation? It would be singular if amid the multitude of low vegetable forms no other could be found capable of acting in a similar way. And here again we have occasion to marvel at that sagacity of observation among the ancients to which we owe so vast a debt. Not only did they discover the alcoholic ferment of yeast, but they had to exercise a wise selection in picking it out from others, and giving it special prominence. Place an old boot in a moist place, or expose common paste or a pot of jam to the air; it soon becomes coated with a blue-green mould, which is nothing else than the fructification of a little plant called Penicillium glaucum. Do not imagine that the mould has sprung spontaneously from boot, or paste, or jam; its germs, which are abundant in the air, have been sown, and have germinated, in as legal and legitimate a way as thistle-seeds wafted by the wind to a proper soil. Let the minute spores of Penicillium be sown in a fermentable liquid, which has been previously so boiled as to kill all other spores or seeds which it may contain; let pure air have free access to the mixture; the Penicillium will grow rapidly, striking long filaments into the liquid, and fructifying at its surface. Test the infusion at various stages of the plant's growth, you will never find in it a trace of alcohol. But forcibly submerge the little plant, push it down deep into the liquid, where the quantity of free oxygen that can reach it is insufficient for its needs, it immediately begins to act as a ferment, supplying itself with oxygen by the decomposition of the sugar, and producing alcohol as one of the results of the decomposition. Many other low microscopic plants act in a similar manner. In aerated liquids they flourish without any production of alcohol, but cut off from free oxygen they act as ferments, producing alcohol exactly as the real alcoholic leaven produces it, only less copiously. For the right apprehension of all these facts we are indebted to Pasteur.

In the cases hitherto considered, the fermentation is proved to be the invariable correlative of life, being produced by organisms foreign to the fermentable substance. But the substance itself may also have within it, to some extent, the motive power of fermentation. The yeast-plant, as we have learned, is an assemblage of living cells; but so at bottom, as shown by Schleiden and Schwann, are all living organisms. Cherries, apples, peaches, pears, plums, and grapes, for example, are composed of cells, each of which is a living unit. And here I have to direct your attention to a point of extreme interest. In 1821, the celebrated French chemist, Bérard, established the important fact that all ripening fruit, exposed to the free atmosphere, absorbed the oxygen of the atmosphere and liberated an approximately equal volume of carbonic acid. He also found that when ripe fruits were placed in a confined atmosphere, the oxygen of the atmosphere was first absorbed, and an equal volume of carbonic acid given out. But the process did not end here. After the oxygen had vanished, carbonic acid, in considerable quantities, continued to be exhaled by the fruits, which at the same time lost a portion of their sugar, becoming more acid to the taste, though the absolute quantity of acid was not augmented. This was an observation of capital importance, and Bérard had the sagacity to remark that the process might be regarded as a kind of fermentation.

Thus the living cells of fruits can absorb oxygen and breathe out carbonic acid, exactly like the living cells of the leaven of beer. Supposing the access of oxygen suddenly cut off, will the living fruit-cells as suddenly die, or will they continue to live as yeast lives, by extracting oxygen from the saccharine juices round them? This is a question of extreme theoretic significance. It was first answered affirmatively by the able and conclusive experiments of Lechartier and Bellamy, and the answer was subsequently confirmed and explained by the experiments and the reasoning of Pasteur. Bérard only showed the absorption of oxygen and the production of carbonic acid; Lechartier and Bellamy proved the production of alcohol, thus completing the evidence that it was a case of real fermentation, though the common alcoholic ferment was absent.