.

[7. Combustion by Invisible Rays.]

The sun's invisible rays far transcend the visible ones in heating power, so that if the alleged performances of Archimedes during the siege of Syracuse had any foundation in fact, the dark solar rays would have been the philosopher's chief agents of combustion. On a small scale we can readily produce, with the purely invisible rays of the electric light, all that Archimedes is said to have performed with the sun's total radiation. Placing behind the electric light a small concave mirror, the rays are converged, the cone of reflected rays and their point of convergence being rendered clearly visible by the dust always floating in the air. Placing between the luminous focus and the source of rays our solution of iodine, the light of the cone is entirely cut away; but the intolerable heat experienced when the band is placed, even for a moment, at the dark focus, shows that the calorific rays pass unimpeded through the opaque solution.

Almost anything that ordinary fire can effect may be accomplished at the focus of invisible rays; the air at the focus remaining at the same time perfectly cold, on account of its transparency to the heat-rays. An air thermometer, with a hollow rack-salt bulb, would be unaffected by the heat of the focus: there would be no expansion, and in the open air there is no convection. The aether at the focus, and not the air, is the substance in which the heat is embodied. A block of wood, placed at the focus, absorbs the heat, and dense volumes of smoke rise swiftly upwards, showing the manner in which the air itself would rise, if the invisible rays were competent to heat it. At the perfectly dark focus dry paper is instantly inflamed: chips of wood are speedily burnt up: lead, tin, and zinc are fused: and disks of charred paper are raised to vivid incandescence. It might be supposed that the obscure rays would show no preference for black over white; but they do show a preference, and to obtain rapid combustion, the body, if not already black, ought to be blackened. When metals are to be burned, it is necessary to blacken or otherwise tarnish them, so as to diminish their reflective power. Blackened zinc foil, when brought into the focus of invisible rays, is instantly caused to blaze, and burns with its peculiar purple light. Magnesium wire flattened, or tarnished magnesium ribbon, also bursts into flame. Pieces of charcoal suspended in a receiver full of oxygen are also set on fire when the invisible focus falls upon them; the dark rays after having passed through the receiver, still possessing sufficient power to ignite the charcoal, and thus initiate the attack of the oxygen. If, instead of being plunged in oxygen, the charcoal be suspended in vacuo, it immediately glows at the place where the focus falls.

.

.

[8. Transmutation of Rays: Calorescence.]

[Footnote: I borrow this term from Professor Challis, 'Philosophical Magazine,' vol. xii. p. 521.]

Eminent experimenters were long occupied in demonstrating the substantial identity of light and radiant heat, and we have now the means of offering a new and striking proof of this identity. A concave mirror produces, beyond the object which it reflects, an inverted and magnified image of the object. Withdrawing, for example, our iodine solution, an intensely luminous inverted image of the carbon points of the electric light is formed at the focus of the mirror employed in the foregoing experiments. When the solution is interposed, and the light is cut away, what becomes of this image? It disappears from sight; but an invisible thermograph remains, and it is only the peculiar constitution of our eyes that disqualifies us from seeing the picture formed by the calorific rays. Falling on white paper, the image chars itself out: falling on black paper, two holes are pierced in it, corresponding to the images of the two coke points: but falling on a thin plate of carbon in vacuo, or upon a thin sheet of platinised platinum, either in vacuo or in air, radiant heat is converted into light, and the image stamps itself in vivid incandescence upon both the carbon and the metal. Results similar to those obtained with the electric light have also been obtained with the invisible rays of the lime-light and of the sun.

Before a Cambridge audience it is hardly necessary to refer to the excellent researches of Professor Stokes at the opposite end of the spectrum. The above results constitute a kind of complement to his discoveries. Professor Stokes named the phenomena which he has discovered and investigated Fluorescence; for the new phenomena here described I have proposed the term Calorescence. He, by the interposition of a proper medium, so lowered the refrangibility of the ultraviolet rays of the spectrum as to render them visible. Here, by the interposition of the platinum foil, the refrangibility of the ultra-red rays is so exalted as to render them visible. Looking through a prism at the incandescent image of the carbon points, the light of the image is decomposed, and a complete spectrum is obtained. The invisible rays of the electric light, remoulded by the atoms of the platinum, shine thus visibly forth; ultra-red rays being converted into red, orange, yellow, green, blue, indigo, violet, and ultraviolet ones. Could we, moreover, raise the original source of rays to a sufficiently high temperature, we might not only obtain from the dark rays of such a source a single incandescent image, but from the dark rays of this image we might obtain a second one, from the dark rays of the second a third, and so on — a series of complete images and spectra being thus extracted from the invisible emission of the primitive source.[Footnote: On investigating the calorescence produced by rays transmitted through glasses of various colours, it was found that in the case of certain specimens of blue glass, the platinum foil glowed with a pink or purplish light. The effect was not subjective, and considerations of obvious interest are suggested by it. Different kinds of black glass differ notably as to their power of transmitting radiant heat. When thin, some descriptions tint the sun with a greenish hue: others make it appear a glowing red without any trace of green. The latter are far more diathermic than the former. In fact, carbon when perfectly dissolved and incorporated with a good white glass, is highly transparent to the calorific rays, and by employing it as an absorbent the phenomena of 'calorescence' may be obtained, though in a less striking form than with the iodine. The black glass chosen for thermometers, and intended to absorb completely the solar heat, may entirely fail in this object, if the glass in which the carbon is incorporated be colourless. To render the bulb of a thermometer a perfect absorbent, the glass ought in the first instance to be green. Soon after the discovery of fluorescence the late Dr. William Allen Miller pointed to the lime-light as an illustration of exalted refrangibility. Direct experiments have since entirely confirmed the view expressed at page 210 of his work on 'Chemistry,' published in 1855.]