[Footnote: A discourse delivered at the Royal Institution of Great Britain on Friday, January 17, 1879, and introduced here as the latest Fragment.]

THE subject of this evening's discourse was proposed by our late honorary secretary. [Footnote: Mr. William Spottiswoode, now President of the Royal Societ] That word 'late' has for me its own connotations. It implies, among other things, the loss of a comrade by whose side I have worked for thirteen years. On the other hand, regret is not without its opposite in the feeling with which I have seen him rise by sheer intrinsic merit, moral and intellectual, to the highest official position which it is in the power of English science to bestow. Well, he, whose constant desire and practice were to promote the interests and extend the usefulness of this institution, thought that at a time when the electric light occupied so much of public attention, a few sound notions regarding it, on the more purely scientific side, might, to use his own pithy expression, be 'planted' in the public mind. I am here to-night with the view of trying, to the best of my ability, to realise the idea of our friend.

In the year 1800, Volta announced his immortal discovery of the pile. Whetted to eagerness by the previous conflict between him and Galvani, the scientific men of the age flung themselves with ardour upon the new discovery, repeating Volta's experiments, and extending them in many ways. The light and heat of the voltaic circuit attracted marked attention, and in the innumerable tests and trials to which this question was subjected, the utility of platinum and charcoal as means of exalting the light was on all hands recognised. Mr. Children, with a battery surpassing in strength all its predecessors, fused platinum wires eighteen inches long, while 'points of charcoal produced a light so vivid that the sunshine, compared with it, appeared feeble.' [Footnote: Davy, 'Chemical Philosophy,' p. 110.] Such effects reached their culmination when, in 1808, through the liberality of a few members of the Royal Institution, Davy was enabled to construct a battery of two thousand pairs of plates, with which he afterwards obtained calorific and luminous effects far transcending anything previously observed. The arc of flame between the carbon terminals was four inches long, and by its heat quartz, sapphire, magnesia, and lime, were melted like wax in a candle flame; while fragments of diamond and plumbago rapidly disappeared as if reduced to vapour. [Footnote: In the concluding lecture at the Royal Institution in June, 1810, Davy showed the action of this battery. He then fused iridium, the alloy of iridium and osmium, and other refractory substances. 'Philosophical Magazine,' vol. xxxv. p. 463. Quetelet assigns the first production of the spark between coal-points to Curtet in 1802. Davy certainly in that year showed the carbon light with a battery of 150 pairs of plates in the theatre of the Royal Institution ('Jour. Roy. Inst.' vol. i. p. 166).]

The first condition to be fulfilled in the development of heat and light by the electric current is that it shall encounter and overcome resistance. Flowing through a perfect conductor, no matter what the strength of the current might be, neither heat nor light could be developed. A rod of unresisting copper carries away uninjured and unwarmed an atmospheric discharge competent to shiver to splinters a resisting oak. I send the self-same current through a wire composed of alternate lengths of silver and platinum. The silver offers little resistance, the platinum offers much. The consequence is that the platinum is raised to a white heat, while the silver is not visibly warmed. The same holds good with regard to the carbon terminals employed for the production of the electric light. The interval between them offers a powerful resistance to the passage of the current, and it is by the gathering up of the force necessary to burst across this interval that the voltaic current is able to throw the carbon into that state of violent intestine commotion which we call heat, and to which its effulgence is due. The smallest interval of air usually suffices to stop the current. But when the carbon points are first brought together and then separated, there occurs between them a discharge of incandescent matter which carries, or may carry, the current over a considerable space. The light comes almost wholly from the incandescent carbons. The space between them is filled with a blue flame which, being usually bent by the earth's magnetism, receives the name of the Voltaic Arc. [Footnote: The part played by resistance is strikingly illustrated by the deportment of silver and thallium when mixed together and volatilised in the arc. The current first selects as its carrier the most volatile metal, which in this case is thallium. While it continues abundant, the passage of the current is so free — the resistance to it is so small — that the heat generated is incompetent to volatilise the silver. As the thallium disappears the current is forced to concentrate its power; it presses the silver into its service, and finally fills the space between the carbons with a vapour — which, as long as the necessary resistance is absent, it is incompetent to produce. I have on a former occasion drawn attention to a danger which besets the spectroscopist when operating upon a mixture of constituents volatile in different degrees. When, in 1872, I first observed the effect here described, had I not known that silver was present, I should have inferred its absence.]

For seventy years, then, we have been in possession of this transcendent light without applying it to the illumination of our streets and houses. Such applications suggested themselves at the outset, but there were grave difficulties in their way. The first difficulty arose from the waste of the carbons, which are dissipated in part by ordinary combustion, and in part by the electric transfer of matter from the one carbon to the other. To keep the carbons at the proper distance asunder regulators were devised, the earliest, I believe, by Staite, and the most successful by Duboscq, Foucault, and Serrin, who have been succeeded by Holmes, Siemens, Browning, Carré, Gramme, Lontin, and others. By such arrangements the first difficulty was practically overcome; but the second, a graver one, is probably inseparable from the construction of the voltaic battery. It arises from the operation of that inexorable law which throughout the material universe demands an eye for an eye, and a tooth for a tooth, refusing to yield the faintest glow of heat or glimmer of light without the expenditure of an absolutely equal quantity of some other power. Hence, in practice, the desirability of any transformation must depend upon the value of the product in relation to that of the power expended. The metal zinc can be burnt like paper; it might be ignited in a flame, but it is possible to avoid the introduction of all foreign heat and to burn the zinc in air of the temperature of this room. This is done by placing zinc foil at the focus of a concave mirror, which concentrates to a point the divergent electric beam, but which does not warm the air. The zinc burns at the focus with a violet flame, and we could readily determine the amount of heat generated by its combustion. But zinc can be burnt not only in air but in liquids. It is thus burnt when acidulated water is poured over it; it is also thus burnt in the voltaic battery. Here, however, to obtain the oxygen necessary for its combustion, the zinc has to dislodge the hydrogen with which the oxygen is combined. The consequence is that the heat due to the combustion of the metal in the liquid falls short of that developed by its combustion in air, by the exact quantity necessary to separate the oxygen from the hydrogen. Fully four-fifths of the total heat are used up in this molecular work, only one-fifth remaining to warm the battery. It is upon this residue that we must now fix our attention, for it is solely out of it that we manufacture our electric light.

Before you are two small voltaic batteries of ten cells each. The two ends of one of them are united by a thick copper wire, while into the circuit of the other a thin platinum wire is introduced. The platinum glows with a white heat, while the copper wire is not sensibly warmed. Now an ounce of zinc, like an ounce of coal, produces by its complete combustion in air a constant quantity of heat. The total heat developed by an ounce of zinc through its union with oxygen in the battery is also absolutely invariable. Let our two batteries, then, continue in action until an ounce of zinc in each of them is consumed. In the one case the heat generated is purely domestic, being liberated on the hearth where the fuel is burnt, that is to say in the cells of the battery itself. In the other case, the heat is in part domestic and in part foreign — in part within the battery and in part outside. One of the fundamental truths to be borne in mind is that the sum of the foreign and domestic — of the external and internal — heats is fixed and invariable. Hence, to have heat outside, you must draw upon the heat within. These remarks apply to the electric light. By the inter-mediation of the electric current the moderate warmth of the battery is not only carried away, but concentrated, so as to produce, at any distance from its origin, a heat next in order to that of the sun. The current might therefore be defined as the swift carrier of heat. Loading itself here with invisible power, by a process of transmutation which outstrips the dreams of the alchemist, it can discharge its load, in the fraction of a second, as light and heat, at the opposite side of the world.

Thus, the light and heat produced outside the battery are derived from the metallic fuel burnt within the battery; and, as zinc happens to be an expensive fuel, though we have possessed the electric light for more than seventy years, it has been too costly to come into general use. But within these walls, in the autumn of 1831, Faraday discovered a new source of electricity, which we have now to investigate. On the table before me lies a coil of covered copper wire, with its ends disunited. I lift one side of the coil from the table, and in doing so exert the muscular effort necessary to overcome the simple weight of the coil. I unite its two ends and repeat the experiment. The effort now required, if accurately measured, would be found greater than before. In lifting the coil I cut the lines of the earth's magnetic force, such cutting, as proved by Faraday, being always accompanied, in a closed conductor, by the production of an 'induced' electric current which, as long as the ends of the coil remained separate, had no circuit through which it could pass. The current here evoked subsides immediately as heat; this heat being the exact equivalent of the excess of effort just referred to as over and above that necessary to overcome the simple weight of the coil. When the coil is liberated it falls back to the table, and when its ends are united it encounters a resistance over and above that of the air. It generates an electric current opposed in direction to the first, and reaches the table with a diminished shock. The amount of the diminution is accurately represented by the warmth which the momentary current developer in the coil. Various devices were employed to exalt these induced currents, among which the instruments of Pixii, Clarke, and Saxton were long conspicuous. Faraday, indeed, foresaw that such attempts were sure to be made; but he chose to leave them in the hands of the mechanician, while he himself pursued the deeper study of facts and principles. 'I have rather,' he writes in 1831, 'been desirous of discovering new facts and new relations dependent on magneto-electric induction, than of exalting the force of those already obtained; being assured that the latter would find their full development hereafter.'

For more than twenty years magneto-electricity had subserved its first and noblest purpose of augmenting our knowledge of the powers of nature. It had been discovered and applied to intellectual ends, its application to practical ends being still unrealised. The Drummond light had raised thoughts and hopes of vast improvements in public illumination. Many inventors tried to obtain it cheaply; and in 1853 an attempt was made to organise a company in Paris for the purpose of procuring, through the decomposition of water by a powerful magneto-electric machine constructed by M. Nollet, the oxygen and hydrogen necessary for the lime light. The experiment failed, but the apparatus by which it was attempted suggested to Mr. Holmes other and more hopeful applications. Abandoning the attempt to produce the lime light, with persevering skill Holmes continued to improve the apparatus and to augment its power, until it was finally able to yield a magneto-electric light comparable to that of the voltaic battery. Judged by later knowledge, this first machine would be considered cumbrous and defective in the extreme; but judged by the light of antecedent events, it marked a great step forward.

Faraday was profoundly interested in the growth of his own discovery. The Elder Brethren of the Trinity House had had the wisdom to make him their 'Scientific Adviser;' and it is interesting to notice in his reports regarding the light, the mixture of enthusiasm and caution which characterised him. Enthusiasm was with him a motive power, guided and controlled by a disciplined judgment. He rode it as a charger, holding it in by a strong rein. While dealing with Holmes, he states the case of the light pro and con. He checks the ardour of the inventor, and, as regards cost, rejecting sanguine estimates, he insists over and over again on the necessity of continued experiment for the solution of this important question. His matured opinion was, however, strongly in favour of the light. With reference to an experiment made at the South Foreland on the 20th of April, 1859, he thus expresses himself:— 'The beauty of the light was wonderful. At a mile off, the Apparent streams of light issuing from the lantern were twice as long as those from the lower lighthouse, and apparently three or four times as bright. The horizontal plane in which they chiefly took their way made all above or below it black. The tops of the bills, the churches, and the houses illuminated by it were striking in their effect upon the eye.' Further on in his report he expresses himself thus :— 'In fulfilment of this part of my duty, I beg to state that, in my opinion, Professor Holmes has practically established the fitness and sufficiency of the magneto-electric light for lighthouse purposes, so far as its nature and management are concerned. The light produced is powerful beyond any other that I have yet seen so applied, and in principle may be accumulated to any degree; its regularity in the lantern is great; its management easy, and its care there may be confided to attentive keepers of the ordinary degree of intellect and knowledge.' Finally, as regards the conduct of Professor Holmes during these memorable experiments, it is only fair to add the following remark with which Faraday closes the report submitted to the Elder Brethren of the Trinity House on the 29th of April, 1859:- 'I must bear my testimony,' he says, 'to the perfect openness, candour, and honour of Professor Holmes. He has answered every question, concealed no weak point, explained every applied principle, given every reason for a change either in this or that direction, during several periods of close questioning, in a manner that was very agreeable to me, whose duty it was to search for real faults or possible objections, in respect both of the present time and the future.' [Footnote: Holmes's first offer of his machine to the Trinity House bears date February 2, 1857.]

Soon afterwards the Elder Brethren of the Trinity House had the intelligent courage to establish the machines of Holmes permanently at Dungeness, where the magneto-electric light continued to shine for many years.