-----

We have machines capable of sustaining a single light, and also machines capable of sustaining several lights. The Gramme machine, for example, which ignites the Jablochkoff candles on the Thames Embankment and at the Holborn Viaduct, delivers four currents, each passing through its own circuit. In each circuit are five lamps through which the current belonging to the circuit passes in succession. The lights correspond to so many resisting spaces, over which, as already explained, the current has to leap; the force which accomplishes the leap being that which produces the light. Whether the current is to be competent to pass through five lamps in succession, or to sustain only a single lamp, depends entirely upon the will and skill of the maker of the machine. He has, to guide him, definite laws laid down by Ohm half a century ago, by which he must abide.

Ohm has taught us how to arrange the elements of a Voltaic battery so as to augment indefinitely its electromotive force — that force, namely, which urges the current forward and enables it to surmount external obstacles. We have only to link the cells together so that the current generated by each cell shall pass through all the others, and add its electro-motive force to that of all the others. We increase, it is true, at the same time the resistance of the battery, diminishing thereby the quantity of the current from each cell, but we augment the power of the integrated current to overcome external hindrances. The resistance of the battery itself may, indeed, be rendered so great, that the external resistance shall vanish in comparison. What is here said regarding the voltaic battery is equally true of magneto-electric machines. If we wish our current to leap over five intervals, and produce five lights in succession, we must invoke a sufficient electromotive force. This is done through multiplying, by the use of thin wires, the convolutions of the rotating armature as, a moment ago, we augmented the cells of our voltaic battery. Each additional convolution, like each additional cell, adds its electro-motive force to that of all the others; and though it also adds its resistance, thereby diminishing the quantity of current contributed by each convolution, the integrated current becomes endowed with the power of leaping across the successive spaces necessary for the production of a series of lights in its course. The current is, as it were, rendered at once thinner and more piercing by the simultaneous addition of internal resistance and electro-motive power. The machines, on the other hand, which produce only a single light have a small internal resistance associated with a small electro-motive force. In such machines the wire of the rotating armature is comparatively short and thick, copper riband instead of wire being commonly employed. Such machines deliver a large quantity of electricity of low tension — in other words, of low leaping power. Hence, though competent when their power is converged upon a single interval, to produce one splendid light, their currents are unable to force a passage when the number of intervals is increased. Thus, by augmenting the convolutions of our machines we sacrifice quantity and gain electro-motive force; while by lessening the number of the convolutions, we sacrifice electro-motive force and gain quantity. Whether we ought to choose the one form of machine or the other depends entirely upon the external work the machine has to perform. If the object be to obtain a single light of great splendour, machines of low resistance and large quantity must be employed. If we want to obtain in the same circuit several lights of moderate intensity, machines of high internal resistance and of correspondingly high electro-motive power must be invoked.

When a coil of covered wire surrounds a bar of iron, the two ends of the coil being connected together, every alteration of the magnetism of the bar is accompanied by the development of an induced current in the coil. The current is only excited during the period of magnetic change. No matter how strong or how weak the magnetism of the bar may be, as long as its condition remains permanent no current is developed. Conceive, then, the pole of a magnet placed near one end of the bar to be moved along it towards the other end. During the time of the pole's motion there will be an incessant change in the magnetism of the bar, and accompanying this change we shall have an induced current in the surrounding coil. If, instead of moving the magnet, we move the bar and its surrounding coil past the magnetic pole, a similar alteration of the magnetism of the bar will occur, and a similar current will be induced in the coil. You have here the fundamental conception which led M. Gramme to the construction of his beautiful machine. [Footnote: 'Comptes Rendus,' 1871, p. 176. See also Gaugain on the Gramme machine, 'Ann. de Chem. et de Phys.,' vol. xxviii. p. 324] He aimed at giving continuous motion to such a bar as we have here described; and for this purpose he bent it into a continuous ring, which, by a suitable mechanism, he caused to rotate rapidly close to the poles of a horse-shoe magnet. The direction of the current varied with the motion and with the character of the influencing pole. The result was that the currents in the two semicircles of the coil surrounding the ring flowed in opposite directions. But it was easy, by the mechanical arrangement called a commutator, to gather up the currents and cause them to flow in the same direction. The first machines of Gramme, therefore, furnished direct currents, similar to those yielded by the voltaic pile. M. Gramme subsequently so modified his machine as to produce alternating currents. Such alternating machines are employed to produce the lights now exhibited on the Holborn Viaduct and the Thames Embankment.

Another machine of great alleged merit is that of M. Lontin. It resembles in shape a toothed iron wheel, the teeth being used as cores, round which are wound coils of copper wire. The wheel is caused to rotate between the opposite poles of powerful electromagnets. On passing each pole the core or tooth is strongly magnetised, and instantly evokes in its surrounding coil an induced current of corresponding strength. The currents excited in approaching to and retreating from a pole, and in passing different poles, move in opposite directions, but by means of a commutator these conflicting electric streams are gathered up and caused to flow in a common bed. The bobbins, in which the currents are induced, can be so increased in number as to augment indefinitely the power of the machine. To excite his electro-magnets, M. Lontin applies the principle of Mr. Wilde. A small machine furnishes a direct current, which is carried round the electro-magnets of a second and larger machine. Wilde's principle, it may be added, is also applied on the Thames Embankment and the Holborn Viaduct; a small Gramme machine being used in each case to excite the electro-magnets of the large one.

The Farmer-Wallace machine is also an apparatus of great power. It consists of a combination of bobbins for induced currents, and of inducing electro-magnets, the latter being excited by the method discovered by Siemens and Wheatstone. In the machines intended for the production of the electric light, the electromotive force is so great as to permit of the introduction of several lights in the same circuit. A peculiarly novel feature of the Farmer-Wallace system is the shape of the carbons. Instead of rods, two large plates of carbons with bevelled edges are employed, one above the other. The electric discharge passes from edge to edge, and shifts its position according as the carbon is dissipated. The duration of the light in this case far exceeds that obtainable with rods. I have myself seen four of these lights in the same circuit in Mr. Ladd's workshop in the City, and they are now, I believe, employed at the Liverpool Street Station of the Metropolitan Railway. The Farmer-Wallace 'quantity machine' pours forth a flood of electricity of low tension. It is unable to cross the interval necessary for the production of the electric light, but it can fuse thick copper wires. When sent through a short bar of iridium, this refractory metal emits a light of extraordinary splendour. [Footnote: The iridium light was shown by Mr. Ladd. It brilliantly illuminated the theatre of the Royal Institution.]

The machine of M. de Méritens, which he has generously brought over from Paris for our instruction, is the newest of all. In its construction he falls back upon the principle of the magneto-electric machine, employing permanent magnets as the exciters of the induced currents. Using the magnets of the Alliance Company, by a skilful disposition of his bobbins, M. de Méritens produces with eight magnets a light equal to that produced by forty magnets in the Alliance machines. While the space occupied is only one-fifth, the cost is little more than one-fourth of the latter. In the de Méritens machine the commutator is abolished. The internal heat is hardly sensible, and the absorption of power, in relation to the effects produced, is small. With his larger machines M. de Méritens maintains a considerable number of lights in the same circuit. [Footnote: The small machine transforms one-and-a-quarter horse-power into heat and light, yielding about 1,900 candles; the large machine transforms five-horse power, yielding about 9,000 candles.]

-----

In relation to this subject, inventors fall into two classes, the contrivers of regulators and the constructors of machines. M. Rapieff has hitherto belonged to inventors of the first class, but I have reason to know that he is engaged on a machine which, when complete, will place him in the other class also. Instead of two single carbon rods, M. Rapieff employs two pairs of rods, each pair forming a V. The light is produced at the common junction of the four carbons. The device for regulating the light is of the simplest character. At the bottom of the stand which supports the carbons are two small electro-magnets. One of them, when the current passes, draws the carbons together, and in so doing throws itself out of circuit, leaving the control of the light to the other. The carbons are caused to approach each other by a descending weight, which acts in conjunction with the electro-magnet. Through the liberality of the proprietors of the Times, every facility has been given to M. Rapieff to develope and simplify his invention at Printing House Square. The illumination of the press-room, which I had the pleasure of witnessing, under the guidance of M. Rapieff himself, is extremely effectual and agreeable to the eye. There are, I believe, five lamps in the same circuit, and the regulators are so devised that the extinction of any lamp does not compromise the action of the others. M. Rapieff has lately improved his regulator.

Many other inventors might here be named, and fresh ones are daily crowding in. Mr. Werdermann has been long known in connection with this subject. Employing as negative carbon a disc, and as positive carbon a rod, he has, I am assured, obtained very satisfactory results. The small resistances brought into play by his minute arcs enable Mr. Werdermann to introduce a number of lamps into a circuit traversed by a current of only moderate electro-motive power. M. Reynier is also the inventor of a very beautiful little lamp, in which the point of a thin carbon rod, properly adjusted, is caused to touch the circumference of a carbon wheel which rotates underneath the point. The light is developed at the place of contact of rod and wheel. One of the last steps, though I am informed not quite the last, in the improvement of regulators is this: The positive carbon wastes more profusely than the negative, and this is alleged to be due to the greater heat of the former. It occurred to Mr. William Siemens to chill the negative artificially, with the view of diminishing or wholly preventing its waste. This he accomplishes by making the negative pole a hollow cone of copper, and by ingeniously discharging a small jet of cold water against the interior of the cone. His negative copper is thus caused to remain fixed in space, for it is not dissipated, the positive carbon only needing control. I have seen this lamp in action, and can bear witness to its success.