The horizontal column of air, thus illuminated, was 18 feet long, and could therefore be looked at very obliquely. I placed myself near the end of the beam, as it issued from the electric lamp, and, looking through the Nicol and selenite more and more obliquely at the beam, observed the colours fading until they disappeared. Augmenting the obliquity the colours appeared once more, but they were now complementary to the former ones.

Hence this beam, like the sky, exhibited a neutral point, on opposite sides of which the light was polarised in planes at right angles to each other.

Thinking that the action observed in the laboratory might be caused, in some way, by the vaporous fumes diffused in its air, I had the light removed to a room at the top of the Royal Institution. The track of the beam was seen very finely in the air of this room, a length of 14 or 15 feet being attainable. This beam exhibited all the effects observed with the beam in the laboratory. Even the uncondensed electric light falling on the floating matter showed, though faintly, the effects of polarisation.

When the air was so sifted as to entirely remove the visible floating matter, it no longer exerted any sensible action upon the light, but behaved like a vacuum. The light is scattered and polarised by particles, not by molecules or atoms.

By operating upon the fumes of chloride of ammonium, the smoke of brown paper, and tobacco-smoke, I had varied and confirmed in many ways those experiments on neutral points, when my attention was drawn by Sir Charles Wheatstone to an important observation communicated to the Paris Academy in 1860 by Professor Govi, of Turin.[Footnote: Comptes Rendus,' tome li, pp. 360 and 669.] M. Govi had been led to examine a beam of light sent through a room in which were successively diffused the smoke of incense, and tobacco-smoke. His first brief communication stated the fact of polarisation by such smoke; but in his second communication he announced the discovery of a neutral point in the beam, at the opposite sides of which the light was polarised in planes at right angles to each other.

But unlike my observations on the laboratory air, and unlike the action of the sky, the direction of maximum polarisation in M. Govi's experiments enclosed a very small angle with the axis of the illuminating beam. The question was left in this condition, and I am not aware that M. Govi or any other investigator has pursued it further.

I had noticed, as before stated, that as the clouds formed in the experimental tube became denser, the polarisation of the light discharged at right angles to the beam became weaker, the direction of maximum polarisation becoming oblique to the beam. Experiments on the fumes of chloride of ammonium gave me also reason to suspect that the position of the neutral point was not constant, but that it varied with the density of the illuminated fumes.

The examination of these questions led to the following new and remarkable results: The laboratory being well filled with the fumes of incense, and sufficient time being allowed for their uniform diffusion, the electric beam was sent through the smoke. From the track of the beam polarised light was discharged; but the direction of maximum polarisation, instead of being perpendicular, now enclosed an angle of only 12° or 13° with the axis of the beam.

A neutral point, with complementary effects at opposite sides of it, was also exhibited by the beam. The angle enclosed by the axis of the beam, and a line drawn from the neutral point to the observer's eye, measured in the first instance 66°.

The windows of the laboratory were now opened for some minutes, a portion of the incense-smoke being permitted to escape. On again darkening the room and turning on the light, the line of vision to the neutral point was found to enclose, with the axis of the beam, an angle of 63°.