Here is a surmise which bears the stamp of genius, but which needs verification. If, for the words 'it is only natural' we were authorised to write 'it is perfectly certain,' the demonstration would be complete. Such demonstration is furnished by experiments with a beam of light. One evening, towards the close of 1869, while pouring various pure gases across the dusty track of a luminous beam, the thought occurred to me of using my breath instead of the gases. I then noticed, for the first time, the extraordinary darkness produced by the expired air, towards the end of the expiration. Permit me to repeat the experiment in your presence. I fill my lungs with ordinary air and breathe through a glass tube across the beam. The condensation of the aqueous vapour of the breath is shown by the formation of a luminous white cloud of delicate texture. We abolish this cloud by drying the breath previous to its entering the beam; or, still more simply, by warming the glass tube. The luminous track of the beam is for a time uninterrupted by the breath, because the dust returning from the lungs makes good, in great part, the particles displaced. After a time, however, an obscure disk appears in the beam, the darkness of which increases, until finally, towards the end of the expiration, the beam is, as it were, pierced by an intensely black hole, in which no particles whatever can be discerned. The deeper air of the lungs is thus proved to be absolutely free from suspended matter. It is therefore in the precise condition required by Professor Lister's explanation. This experiment may be repeated any number of times with the same result. I think it must be regarded as a crowning piece of evidence both of the correctness of Professor Lister's views and of the impotence, as regards vital development, of optically pure air. [Footnote: Dr. Burden Sanderson draws attention to the important observation of Brauell, which shows that the contagium of a pregnant animal, suffering from splenic fever, is not found in the blood of the foetus; the placental apparatus acting as a filter, and holding back the infective particles. ]

.

[Application of Luminous beams to Water.]

The method of examination here pursued is also applicable to water. It is in some sense complementary to that of the microscope, and may, I think, materially aid enquiries conducted with that instrument. In microscopic examination attention is directed to a small portion of the liquid, and the aim is to detect the individual particles. By the present method a large portion of the liquid is illuminated, the collective action of the particles being revealed, by the scattered light. Care is taken to defend the eye from the access of all other light, and, thus defended, it becomes an organ of inconceivable delicacy. Indeed, an amount of impurity so infinitesimal as to be scarcely expressible in numbers, and the individual particles of which are so small as wholly to elude the microscope, may, when examined by the method alluded to, produce not only sensible, but striking, effects upon the eye.

We will apply the method, in the first place, to an experiment of M. Pouchet intended to prove conclusively that animalcular life is developed in cases where no antecedent germs could possibly exist. He produced water from the combustion of hydrogen in air, justly arguing that no germ could survive the heat of a hydrogen flame. But he overlooked the fact that his aqueous vapour was condensed in the air, and was allowed as water to trickle through the air. Indeed the experiment is one of a number by which workers like M. Pouchet are differentiated from workers like Pasteur. I will show you some water, produced by allowing a hydrogen flame to play upon a polished silver condenser, formed by the bottom of a silver basin, containing ice. The collected liquid is pellucid in the common light; but in the condensed electric beam it is seen to be laden with particles, so thick-strewn and minute as to produce a continuous luminous cone. In passing through the air the water loaded itself with this matter; and the deportment of such water could obviously have no influence in deciding this great question.

We are invaded with dirt not only in the air we breathe, but in the water we drink. To prove this I take the bottle of water intended to quench your lecturer's thirst; which, in the track of the beam, simply reveals itself as dirty water. And this water is no worse than the other London waters. Thanks to the kindness of Professor Frankland, I have been furnished with specimens of the water of eight London companies. They are all laden with impurities mechanically suspended. But you will ask whether filtering will not remove the suspended matter? The grosser matter, undoubtedly, but not the more finely divided matter. Water may be passed any number of times through bibulous paper, it will continue laden with fine matter. Water passed through Lipscomb's charcoal filter, or through the filters of the Silicated Carbon Company, has its grosser matter removed, but it is thick with fine matter. Nine-tenths of the light scattered by these suspended particles is perfectly polarised in a direction at right angles to the beam, and this release of the particles from the ordinary law of polarisation is a demonstration of their smallness. I should say by far the greater number of the particles concerned in this scattering are wholly beyond the range of the microscope, and no ordinary filter can intercept such particles. It is next to impossible, by artificial means, to produce a pure water. Mr. Hartley, for example, some time ago distilled water while surrounded by hydrogen, but the water was not free from floating matter. It is so hard to be clean in the midst of dirt. In water from the Lake of Geneva, which has remained long without being stirred, we have an approach to the pure liquid. I have a bottle of it here, which was carefully filled for me by my distinguished friend Soret. The track of the beam through it is of a delicate sky-blue; there is scarcely a trace of grosser matter.

The purest water that I have seen — probably the purest which has been seen hitherto — has been obtained from the fusion of selected specimens of ice. But extraordinary. precautions are required to obtain this degree of purity. The following apparatus has been constructed for this purpose: Through the plate of an air-pump passes the shank of a large funnel, attached to which below the plate is a clean glass bulb. In the funnel is placed a block of the most transparent ice, and over the funnel a glass receiver. This is first exhausted and refilled several times with air, filtered by its passage through cotton-wool, the ice being thus surrounded by pure moteless air. But the ice has previously been in contact with mote-filled air; it is therefore necessary to let it wash its own surface, and also to wash the bulb which is to receive the water of liquefaction. The ice is permitted to melt, the bulb is filled and emptied several times, until finally the large block dwindles to a small one. We may be sure that all impurity has been thus removed from the surface of the ice. The water obtained in this way is the purest hitherto obtained. Still I should hesitate to call it absolutely pure. When condensed light is sent through it, the track of the beam is not invisible, but of the most exquisitely delicate blue. This blue is purer than that of the sky, so that the matter which produces it must be finer than that of the sky. It may be and indeed has been, contended that this blue is scattered by the very molecules of the water, and not by matter suspended in the water. But when we remember that this perfection of blue is approached gradually through stages of less perfect blue; and when we consider that a blue in all respects similar is demonstrably obtainable from particles mechanically suspended, we should hesitate, I think, to conclude that we have arrived here at the last stage of purification. The evidence, I think, points distinctly to the conclusion that, could we push the process of purification still farther, even this last delicate trace of blue would disappear.

[Chalk-water. Clark's Softening Process.]

But is it not possible to match the water of the Lake of Geneva here in England? Undoubtedly it is. We have in England a kind of rock which constitutes at once an exceedingly clean recipient and a natural filter, and from which we can obtain water extremely free from mechanical impurities. I refer to the chalk formation, in which large quantities of water are held in store. Our chalk hills are in most cases covered with thin layers of soil, and with very scanty vegetation. Neither opposes much obstacle to the entry of the rain into the chalk, where any organic impurity which the water may carry in is soon oxidised and rendered harmless. Those who have scampered like myself over the downs of Hants and Wilts will remember the scarcity of water in these regions. In fact, the rainfall, instead of washing the surface and collecting in streams, sinks into the fissured chalk and percolates through it. When this formation is suitably tapped, we obtain water of exceeding briskness and purity. A large glass globe, filled with the water of a well near Tring, shows itself to be wonderfully free from mechanical impurity. Indeed, it stands to reason that water wholly withdrawn from surface contamination, and percolating through so clean a substance, should be pure. It has been a subject much debated, whether the supply of excellent water which the chalk holds in store could not be rendered available for London. Many of the most eminent engineers and chemists have ardently recommended this source, and have sought to show, not only that its purity is unrivalled, but that its quantity is practically inexhaustible. Data sufficient to test this are now, I believe, in existence; the number of wells sunk in the chalk being so considerable, and the quantity of water which they yield so well known.

But this water, so admirable as regards freedom from mechanical impurity, labours under the disadvantage of being rendered very hard by the carbonate of lime which it holds in solution. The chalk-water in the neighbourhood of Watford contains about seventeen grains of carbonate of lime per gallon. This, in the old terminology, used to be called seventeen degrees of hardness. This hard water is bad for tea, bad for washing, and it furs our boilers, because the lime held in solution is precipitated by boiling. If the water be used cold, its hardness must be neutralised at the expense of soap, before it will give a lather. These are serious objections to the use of chalk-water in London. But they are successfully met by the fact that such water can be softened inexpensively, and on a grand scale. I had long known the method of softening water called Clark's process, but not until recently, under the guidance of Mr. Homersham, did I see proof of its larger applications. The chalk-water is softened for the supply of the city of Canterbury; and at the Chiltern Hills it is softened for the supply of Tring and Aylesbury. Caterham also enjoys the luxury.