So much for Glen Gluoy. But suppose the mouth of Glen Roy also stopped by a similar barrier. Behind it also the water from the adjacent mountains would collect. The surface of the lake thus formed would gradually rise, until it had reached the level of the col which divides Glen Roy from Glen Spey. Here the rising of the lake would cease; its superabundant water being poured over the col into the valley of the Spey. This state of things would continue as long as a sufficiently high barrier remained at the mouth of Glen Roy. The lake thus dammed in, with its surface at the level of the highest parallel road, would act, as in Glen Gluoy, upon the friable drift overspreading the mountains, and would form the highest road or terrace of Glen Roy.

And now let us suppose the barrier to be so far removed from the mouth of Glen Roy as to establish a connection between it and the upper part of Glen Spean, while the lower part of the latter glen still continued to be blocked up. Upper Glen Spean and Glen Roy would then be occupied by a continuous lake, the level of which would obviously be determined by the col at the head of Loch Laggan. The water in Glen Roy would sink from the level it had previously maintained, to the level of its new place of escape. This new lake-surface would correspond exactly with the lowest parallel road, and it would form that road by its action upon the drift of the adjacent mountains.

In presence of the observed facts, this solution commends itself strongly to the scientific mind. The question next occurs, What was the character of the assumed barrier which stopped the glens? There are at the present moment vast masses of detritus in certain portions of Glen Spean, and of such detritus Sir Thomas Dick-Lauder imagined his barriers to have been formed. By some unknown convulsion, this detritus had been heaped up. But, once given, and once granted that it was subsequently removed in the manner indicated, the single road of Glen Gluoy and the highest and lowest roads of Glen Roy would be explained in a satisfactory manner.

To account for the second or middle road of Glen Roy, Sir Thomas Dick-Lauder invoked a new agency. He supposed that at a certain point in the breaking down or waste of his dam, a halt occurred, the barrier holding its ground at a particular level sufficiently long to dam a lake rising to the height of, and forming the second road. This point of weakness was at once detected by Mr. Darwin, and adduced by him as proving that the levels of the cols did not constitute an essential feature in the phenomena of the parallel roads. Though not destroyed, Sir Thomas Dick-Lauder's theory was seriously shaken by this argument, and it became a point of capital importance, if the facts permitted, to remove such source of weakness. This was done in 1847 by Mr. David Milne, now Mr. Milne-Home. On walking up Glen Roy from Roy Bridge, we pass the mouth of a lateral glen, called Glen Glaster, running eastward from Glen Roy. There is nothing in this lateral glen to attract attention, or to suggest that it could have any conspicuous influence in the production of the parallel roads. Hence, probably, the failure of Sir Thomas Dick-Lauder to notice it. But Mr. Milne-Home entered this glen, on the northern side of which the middle and lowest roads are fairly shown. The principal stream running through the glen turns at a certain point northwards and loses itself among hills too high to offer any outlet. But another branch of the glen turns to the south-east; and, following up this branch, Mr. Milne-Home reached a col, or watershed, of the precise level of the second Glen Roy road. When the barrier blocking the glens had been so far removed as to open this col, the water in Glen Roy would sink to the level of the second road. A new lake of diminished depth would be thus formed, the surplus water of which would escape over the Glen Glaster col into Glen Spean. The margin of this new lake, acting upon the detrital matter, would form the second road. The theory of Sir Thomas Dick-Lauder, as regards the part played by the cols, was re-riveted by this new and unexpected discovery.

I have referred to Mr. Darwin, whose powerful mind swayed for a time the convictions of the scientific world in relation to this question. His notion was — and it is a notion which very naturally presents itself — that the parallel roads were formed by the sea; that this whole region was once submerged and subsequently upheaved; that there were pauses in the process of upheaval, during which these glens constituted so many fiords, on the sides of which the parallel terraces were formed. This theory will not bear close criticism; nor is it now maintained by Mr. Darwin himself. It would not account for the sea being 20 feet higher in Glen Gluoy than in Glen Roy. It would not account for the absence of the second and third Glen Roy roads from Glen Gluoy, where the mountain flanks are quite as impressionable as in Glen Roy. It would not account for the absence of the shelves from the other mountains in the neighbourhood, all of which 'would have been clasped by the sea had the sea been there. Here then, and no doubt elsewhere, Mr. Darwin has shown himself to be fallible; but here, as elsewhere, he has shown himself equal to that discipline of surrender to evidence which girds his intellect with such unassailable moral strength.

But, granting the significance of Sir Thomas Dick-Lauder's facts, and the reasonableness, on the whole, of the views which he has founded on them, they will not bear examination in detail. No such barriers of detritus as he assumed could have existed without leaving traces behind them; but there is no trace left. There is detritus enough in Glen Spean, but not where it is wanted. The two highest parallel roads stop abruptly at different points near the mouth of Glen Roy, but no remnant of the barrier against which they abutted is to be seen. It might be urged that the subsequent invasion of the valley by glaciers has swept the detritus away; but there have been no glaciers in these valleys since the disappearance of the lakes. Professor Geikie has favoured me with a drawing of the Glen Spean 'road' near the entrance to Glen Trieg. The road forms a shelf round a great mound of detritus which, had a glacier followed the formation of the shelf, must have been cleared away. Taking all the circumstances into account, you may, I think, with safety dismiss the detrital barrier as incompetent to account for the present condition of Glen Gluoy and Glen Roy.

Hypotheses in science, though apparently transcending experience, are in reality experience modified by scientific thought and pushed into an ultra experiential region. At the time that he wrote, Sir Thomas Dick-Lauder could not possibly have discerned the cause subsequently assigned for the blockage of these glens. A knowledge of the action of ancient glaciers was the necessary antecedent to the new explanation, and experience of this nature was not possessed by the distinguished writer just mentioned. The extension of Swiss glaciers far beyond their present limits, was first made known by a Swiss engineer named Venetz, who established, by the marks they had left behind them, their former existence in places which they had long forsaken. The subject of glacier extension was subsequently followed up with distinguished success by Charpentier, Studer, and others. With characteristic vigour Agassiz grappled with it, extending his observations far beyond the domain of Switzerland. He came to this country in 1840, and found in various places indubitable marks of ancient glacier action. England, Scotland, Wales, and Ireland he proved to have once given birth to glaciers. He visited Glen Roy, surveyed the surrounding neighbourhood, and pronounced, as a consequence of his investigation, the barriers which stopped the glens and produced the parallel roads to have been barriers of ice. To Mr. Jamieson, above all others, we are indebted for the thorough testing and confirmation of this theory.

And let me here say that Agassiz is only too likely to be misrated and misjudged by those who, though accurate within a limited sphere, fail to grasp in their totality the motive powers invoked in scientific investigation. True he lacked mechanical precision, but he abounded in that force and freshness of the scientific imagination which in some sciences, and probably in some stages of all sciences, are essential to the creator of knowledge. To Agassiz was given, not the art of the refiner, but the instinct of the discoverer, and the strength of the delver who brings ore from the recesses of the mine. That ore may contain its share of dross, but it also contains the precious metal which gives employment to the refiner, and without which his occupation would depart.

Let us dwell for a moment upon this subject of ancient glaciers. Under a flask containing water, in which a thermometer is immersed, is placed a Bunsen's lamp. The water is heated, reaches a temperature of 212°, and then begins to boil. The rise of the thermometer then ceases, although heat continues to be poured by the lamp into the water. What becomes of that heat? We know that it is consumed in the molecular work of vaporization. In the experiment here arranged, the steam passes from the flask through a tube into a second vessel kept at a low temperature. Here it is condensed, and indeed congealed to ice, the second vessel being plunged in a mixture cold enough to freeze the water. As a result of the process we obtain a mass of ice. That ice has an origin very antithetical to its own character. Though cold, it is the child of heat. If we removed the lamp, there would be no steam, and if there were no steam there would be no ice. The mere cold of the mixture surrounding the second vessel would not produce ice. The cold must have the proper material to work upon; and this material — aqueous vapour — is, as we here see, the direct product of heat.

It is now, I suppose, fifteen or sixteen years since I found myself conversing with an illustrious philosopher regarding that glacial epoch which the researches of Agassiz and others had revealed. This profoundly thoughtful man maintained the fixed opinion that, at a certain stage in the history of the solar system, the sun's radiation had suffered diminution, the glacial epoch being a consequence of this solar chill. The celebrated French mathematician Poisson had another theory. Astronomers have shown that the solar system moves through space, and 'the temperature of space' is a familiar expression with scientific men. It was considered probable by Poisson that our system, during its motion, had traversed portions of space of different temperatures; and that, during its passage through one of the colder regions of the universe, the glacial epoch occurred. Notions such as these were more or less current everywhere not many years ago, and I therefore thought it worth while to show how incomplete they were. Suppose the temperature of our planet to be reduced, by the subsidence of solar heat, the cold of space, or any other cause, say one hundred degrees. Four-and-twenty hours of such a chill would bring down as, snow nearly all the moisture of our atmosphere. But this would not produce a glacial epoch. Such an epoch would require the long-continued generation of the material from which the ice of glaciers is derived. Mountain snow, the nutriment of glaciers, is derived from aqueous vapour raised mainly from the tropical ocean by the sun. The solar fire is as necessary a factor in the process as our lamp in the experiment referred to a moment ago. Nothing is easier than to calculate the exact amount of heat expended by the sun in the production of a glacier. It would, as I have elsewhere shown, [Footnote: 'Heat a Mode of Motion,' fifth edition, chap. vi.: Forms of Water, §§ 55 and 56.] raise a quantity of cast iron five times the weight of the glacier not only to a white heat, but to its point of fusion. If, as I have already urged, instead of being filled with ice, the valleys of the Alps were filled with white-hot metal, of quintuple the mass of the present glaciers, it is the heat, and not the cold, that would arrest our attention and solicit our explanation. The process of glacier making is obviously one of distillation, in which the fire of the sun, which generates the vapour, plays as essential a part as the cold of the mountains which condenses it. [Footnote: In Lyell's excellent 'Principles of Geology,' the remark occurs that 'several writers have fallen into the strange error of supposing that the glacial period must have been one of higher mean temperature than usual.' The really strange error was the forgetfulness of the fact that without the heat the substance necessary to the production of glaciers would be wanting.]