The erosion theory ascribes the formation of Alpine valleys to the agencies here briefly referred to. It invokes nothing but true causes. Its artificers are still there, though, it may be, in diminished strength; and if they are granted sufficient time, it is demonstrable that they are competent to produce the effects ascribed to them. And what does the fracture theory offer in comparison? From no possible application of this theory, pure and simple, can we obtain the slopes and forms of the mountains. Erosion must in the long run be invoked, and its power therefore conceded. The fracture theory infers from the disturbances of the Alps the existence of fissures; and this is a probable inference. But that they were of a magnitude sufficient to produce the conformation of the Alps, and that they followed, as the Alpine valleys do, the lines of natural drainage of the country, are assumptions which do not appear to me to be justified either by reason or by observation.
There is a grandeur in the secular integration of small effects implied by the theory of erosion almost superior to that involved in the idea of a cataclysm. Think of the ages which must have been consumed in the execution of this colossal sculpture. The question may, of course, be pushed further. Think of the ages which the molten earth required for its consolidation. But these vaster epochs lack sublimity through our inability to grasp them. They bewilder us, but they fail to make a solemn impression. The genesis of the mountains comes more within the scope of the intellect, and the majesty of the operation is enhanced by our partial ability to conceive it. In the falling of a rock from a mountain-head, in the shoot of an avalanche, in the plunge of a cataract, we often see more impressive illustrations of the power of gravity than in the motions of the stars. When the intellect has to intervene, and calculation is necessary to the building up of the conception, the expansion of the feelings ceases to be proportional to the magnitude of the phenomena.
-----
I will here record a few other measurements executed on the Rosegg glacier: the line was staked out across the trunk formed by the junction of the Rosegg proper with the Tschierva glacier, a short distance below the rocky promontory called Agaliogs.
Rosegg Glacier.
| No. of Stake. | Hourly Motion. |
| 1 | 0.01 inch. |
| 2 | 0.05 |
| 3 | 0.07 |
| 4 | 0.10 |
| 5 | 0.11 |
| 6 | 0.13 |
| 7 | 0.14 |
| 8 | 0.18 |
| 9 | 0.24 |
| 10 | 0.23 |
| 11 | 0.24 |
This is an extremely slowly moving glacier; the maximum motion hardly amounts to seven inches a day. Crevasses prevented us from continuing the line quite across the glacier.
.
.
.