All dynamos are constructed on the same general principle as that of the uni-direction machine just described; but they differ in their windings, the quantities of metal electrified, the sizes and lengths of wire wound on both armature and field, and in their shape and speeds.
In large dynamos it is impossible to employ steel magnets of the required size. In place of them soft iron cores are used and magnetized by external electric current; or the wiring is done in “series” or “shunt,” so that the fields will be self-exciting once the machine has been properly started.
The principal difference in dynamos is, perhaps, more clearly illustrated by the diagrams shown in [Figs. 13], [14], [15], and [16]. In [Fig. 13] the arrangement of armature and field-magnet is the same as in the uni-direction machine, the field (F) being of magnetized steel, while the armature (A) is of soft iron wound with coils of fine wire, the ends of which are brought out at the commutators (C), through which the current is carried to the brushes (B and B B). If, however, the soft iron cores are used, a separate magnetizing electric current must be passed through the coils of wire wound about the field-pieces, so that they will become temporary magnets—the same as the cores of an electric bell movement, a telegraph-sounder, or the induction-coil core when a current is passed through the primary coil. The armature (A) is then driven at high speed by power, and the current is taken off for use through wires that lead from B and B B.
In all of these figures the armatures rotate, in the space between the large pole-pieces of the field-magnets, in the same direction as the hands of a clock move. In these figure drawings the field-magnets, commutators, and brushes only are shown, the armature being indicated by the circle (A).
[Figure 13] represents a dynamo, the field-magnets of which are excited by a separate battery or generator. This is known as a “separately excited” machine, and is employed for various uses. The brushes (B and B B) are connected to the external circuit—that is, with the motor or other apparatus for which current is to be generated. The magnetic field in which the armature rotates will be constant if the exciting current is constant, like the magnetism in the magnet of the uni-direction current machine.
The induced electro-motive force (which depends upon the rate at which the lines of force are cut) will be constant for the given speed at which the armature rotates. This action is the same as that described for the uni-direction current machine.
[Figure 14] is the diagram of a “series”-wound dynamo. The field and armature are soft gray iron, and are wound in series—that is, one end of the magnet-winding is made fast to the brush B, the other to the brush B B, and the apparatus to be operated by the current is let in between B B and the magnet, as shown by the indicated electric arc-light in the illustration. The field-magnet coils, the armature, and the external conductors are in series with each other, forming a simple circuit. When the armature is driven at high speed the field-magnets become self-exciting, with the result that current is generated. Its simple course is through B B to commutators on the hub, thence through one winding on the iron armature A, to B, through field F, and back to B B again, operating in its course any pieces of equipment designed for electric impulse, such as motors, or lamps, trolley-cars, trains, or electric machinery.
The third type, shown in [Fig. 15], is known as “shunt”-winding. The field-magnet coils and the external resistance are in parallel, or shunt with each other, instead of in series. The brushes are connected with the external circuit, and also with the ends of the field-magnet coils. This is clearly shown in the drawing. The ends of the field-coils are connected with brushes B and B B, and the external circuit wires are connected also with the same brushes, and pass down to such an apparatus as a plating bath, in which the current runs through the electrode, the electrolyte, and the cathode, most of the current generated passing through the external circuit. The field-coils are of fine wire, and when the armature is rotated there will always be a current through the field-magnets, whether the external circuit is complete or not. If a break occurs in the external circuit, a more powerful current will consequently pass through the field-magnets.