After dinner, my father asked me to take a walk over the farm. We came to a field of barley. Standing at one end of the field, about the middle, he asked me if I could see any difference in the crop. “Oh, yes,” I replied, “the barley on the right-hand is far better than on the left hand. The straw is stiffer and brighter, and the heads larger and heavier. I should think the right half of the field will be ten bushels per acre better than the other.”
“So I think,” he said, “and now can you tell me why?” —“Probably you manured one half the field for turnips, and not the other half.” —“No.” —“You may have drawn off the turnips from half the field, and fed them off by sheep on the other half.” —“No, both sides were treated precisely alike.” —I gave it up —“Well,” said he, “this half the field on the right-hand was limed, thirty years ago, and that is the only reason I know for the difference. And now you need not tell me that lime does not pay.”
I can well understand how this might happen. The system of rotation adopted was, 1st clover, 2d wheat, 3d turnips, 4th barley, seeded with clover.
Now, you put on, say 150 bushels of lime for wheat. After the wheat the land is manured and sown with turnips. The turnips are eaten off on the land by sheep; and it is reasonable to suppose that on the half of the field dressed with lime there would be a much heavier crop of turnips. These turnips being eaten off by the sheep would furnish more manure for this half than the other half. Then again, when the land was in grass or clover, the limed half would afford more and sweeter grass and clover than the other half, and the sheep would remain on it longer. They would eat it close into the ground, going only on to the other half when they could not get enough to eat on the limed half. More of their droppings would be left on the limed half of the field. The lime, too, would continue to act for several years; but even after all direct benefit from the lime had ceased, it is easy to understand why the crops might be better for a long period of time.
“Do you think lime would do any good,” asked the Deacon, “on our limestone land?”—I certainly do. So far as I have seen, it does just as much good here in Western New York, as it did on my father’s farm. I should use it very freely if we could get it cheap enough—but we are charged from 25 to 30 cts. a bushel for it, and I do not think at these rates it will pay to use it. Even gold may be bought too dear.
“You should burn your own lime,” said the Deacon, “you have plenty of limestone on the farm, and could use up your down wood.”—I believe it would pay me to do so, but one man cannot do everything. I think if farmers would use more lime for manure we should get it cheaper. The demand would increase with competition, and we should soon get it at its real value. At 10 to 15 cents a bushel, I feel sure that we could use lime as a manure with very great benefit.
“I was much interested some years ago,” said the Doctor, “in the results of Prof. Way’s investigations in regard to the absorptive powers of soils.”
His experiments, since repeated and confirmed by other chemists, formed a new epoch in agricultural chemistry. They afforded some new suggestions in regard to how lime may benefit land.
Prof. Way found that ordinary soils possessed the power of separating, from solution in water, the different earthy and alkaline substances presented to them in manure; thus, when solutions of salts of ammonia, of potash, magnesia, etc., were made to filter slowly through a bed of dry soil, five or six inches deep, arranged in a flower-pot, or other suitable vessel, it was observed that the liquid which ran through, no longer contained any of the ammonia or other salt employed. The soil had, in some form or other, retained the alkaline substance, while the water in which it was previously dissolved passed through.