“I know all that,” said the Deacon. “I admit the fact that superphosphate is a good manure for turnips. What I want to know is the reason why superphosphate is better for turnips than for wheat?”

“Many reasons might be given,” said the Doctor; “Prof. Vœlcker attributes it to the limited feeding range of the roots of turnips, as compared to wheat. ‘The roots of wheat,’ says Prof. Vœlcker, ‘as is well known, penetrate the soil to a much greater depth than the more delicate feeding fibres of the roots of turnips. Wheat, remaining on the ground two or three months longer than turnips, can avail itself for a longer period of the resources of the soil; therefore in most cases the phosphoric acid disseminated through the soil is amply sufficient to meet the requirements of the wheat crop; whilst turnips, depending on a thinner depth of soil during their shorter period of growth, cannot assimilate sufficient phosphoric acid, to come to perfection.’ This is, I believe, the main reason why the direct supply of readily available phosphates is so beneficial to root-crops, and not to wheat.”

“This reason,” said I, “has never been entirely satisfactory to me. If the roots of the turnip have such a limited range, how are they able to get such a large amount of potash?

“It is probable that the turnip, containing such a large relative amount of potash and so little phosphoric acid, has roots capable of absorbing potash from a very weak solution, but not so in regard to phosphoric acid.”

“There is another way of looking at this matter,” said the Doctor. “You must recollect that, if turnips and wheat were growing in the same field, both plants get their food from the same solution. And instead of supposing that the wheat-plant has the power of taking up more phosphoric acid than the turnip-plant, we may suppose that the turnip has the power of rejecting or excluding a portion of phosphoric acid. It takes up no more potash than the wheat-plant, but it takes less phosphoric acid.”

But it is not necessary to speculate on this matter. For the present we may accept the fact, that the proportion of potash, phosphoric acid, and nitrogen in the crop is no indication of the proper proportion in which these ingredients should be applied to the soil for these crops in manure.

It may well be that we should use special manures for special crops; but we must ascertain what these manures should be, not from analyses of the crops to be grown, but from experiment and experience.

So far as present facts throw light on this subject, we should conclude that those crops which contain the least nitrogen are the most likely to be benefited by its artificial application; and the crops containing the most phosphoric acid, are the crops to which, in ordinary practical agriculture, it will be unprofitable to apply superphosphate of lime.

“That,” said the Doctor, “may be stating the case a little too strong.”

“Perhaps so,” said I, “but you must recollect I am now speaking of practical agriculture. If I wanted to raise a good crop of cabbage, I should not think of consulting a chemical analysis of the cabbage. If I set out cabbage on an acre of land, which, without manure, would produce 16 tons of cabbage, does any one mean to tell me that if I put the amount of nitrogen, phosphoric acid and potash which 10 tons of cabbage contain, on an adjoining acre, that it would produce an extra growth of 10 tons of cabbage. I can not believe it. The facts are all the other way. Plant growth is not such a simple matter as the advocates of this theory, if there be any at this late day, would have us believe.”