Winter of 1837-8, contained 79.6 per cent of water.
Winter of 1838-9, contained 77.8 ””
Autumn of 1839, contained 80.4 ””

Fresh solid cow-dung contains, according to the same authority, 90 per cent of water.

I have frequently seen manure drawn out in the spring, that had not been decomposed at all, and with more or less snow among it, and with water dripping from the wagon, while it was being loaded. It was, in fact, straw saturated with water, and discolored by the droppings of animals. Now, how much of such manure would a ton of dry straw make? If we should take 20 lbs. of straw, trample it down, and from time to time sprinkle it with water and snow, until we had got on 80 lbs., and then put on 20 lbs. more straw, and 80 lbs. more water, and keep on until we had used up a ton of straw, how much “so-called manure,” should we have to draw out?

20 lbs. of straw, and 80 lbs. water = 100 lbs. so-called manure.
2,000 lbs. of straw, and 8,000 lbs. water = 10,000 lbs. so-called manure.

In other words, we get five tons of such manure from one ton of straw. This is, perhaps, an extreme case, but there can be little doubt, that a ton of straw, trampled down by cattle, and sheep, in an open barn-yard, exposed to snow and rain, would weigh four tons when drawn out wet in the spring.


Yes, it is quite an argument in favor of manure cellars. I have always had a prejudice against them—probably, because the first one I saw was badly managed. There is, however, no necessity, even in an ordinary open barn-yard, with more or less sheds and stables, of having so much water in the manure when drawn out. The real point of my remarks, which so surprised Mr. Geddes, was this: We have to draw out so much water with our manure, under any circumstances, that we should try to have it as rich as possible. It is certainly true, that, if the manure from a ton of straw is worth $3, that from a ton of clover-hay, is worth $10. And it costs no more to draw out and spread the one than the other. I have never yet found a farmer who would believe that a ton of clover-hay, rotted down in the barn-yard, would make three or four tons of manure; but he would readily assent to the proposition, that it took four or five tons of green clover to make a ton of hay; and that if these four or five tons of green-clover were rotted in the yard, it would make three or four tons of manure. And yet, the only difference between the green-clover and the hay, is, that the latter has lost some 60 or 70 per cent of water in curing. Add that amount of water to the hay, and it will make as much manure as the green-clover from which the hay was made.

GYPSUM AND CLOVER AS MANURE.

A good farmer came in while we were talking. “Nothing like plaster and clover,” he said, “for keeping up a wheat-farm.” And you will find this the general opinion of nearly all American wheat-growers. It must be accepted as a fact. But the deductions drawn from the fact are as various as they are numerous.

Let us look first at the fact. And, if you like, we will take my own farm as an example. About 60 years ago, it was covered with the primeval forest. The trees, on the higher and drier land, were first cut down, and many of them burnt on the land. Wheat was sown among the stumps. The crop varied in different years, from 10 to 30 bushels per acre. When 30 bushels were grown, the fact was remembered. When 10 bushels only were grown, little was said about it in after years, until now there is a general impression that our wheat crops were formerly much larger per acre than now. I doubt it; but we will not discuss the point. One thing is certain, the land would produce good crops of clover; and when this clover was plowed under for manure, we got better crops of wheat afterwards. This was the rule. Later, we commenced to use gypsum as a top-dressing on clover. The effect was often wonderful. Farmers will tell you that they sowed 200 lbs. of plaster per acre, on their young clover, in the spring, and it doubled the crop. This statement expresses an agricultural, and not an arithmetical fact. We do not know that the crop on the plastered portion was twice as heavy as on the unplastered. We know that it was larger, and more luxuriant. There was a greater, and more vigorous growth. And this extra growth was caused by the small top-dressing of powdered gypsum rock. It was a great fact in agriculture. I will call it fact, No. 1.