* * * * *

We have taken only limbs as examples of what is true of the whole skeleton. To the superficial observer the bodies of animals of different classes seem to differ fundamentally in plan—to be entirely different machines, made each for its own purposes, at once, out of hand. Extensive comparison, on the contrary, shows them to be the same, although the essential identity is obscured by adaptive modifications. The simplest, in fact the only scientific, explanation of the phenomena of vertebrate structure is the idea of a primal vertebrate, modified more and more through successive generations by the necessities of different modes of life.

See, then, in conclusion, the difference between man’s mode of working and Nature’s. A man having made a steam-engine, and desiring to use it for a different purpose from that for which it was first designed and used, will nearly always be compelled to add new parts not contemplated in the original machine. Nature rarely makes new parts—never, if she can avoid it—but, on the contrary, adapts an old part to the new function. It is as if Nature were not free to use any and every device to accomplish her end, but were conditioned by her own plans of structure; as, indeed, she must be according to the derivation theory. For example: In early Devonian times fishes were the only representatives of the vertebrate type of structure. The vertebrate machine was then a swimming-machine. In the course of time, when all was ready and conditions were favorable, reptiles were introduced. Here, then, is a new function—that of locomotion on land. We want a walking-machine. Shall we have a new organ for this new function? No: the old swimming-organ is modified so as to adapt it for walking. Time went on, until the middle Jurassic, and birds were introduced. Here is a new and wonderful function, that of flying in the air. We want a flying-machine. We know how man would have done this; for we have the result of his imagination in angels of Christian art and griffins of Greek mythology. He would have added wings to already existing parts, and this would have necessitated the alteration of the whole plan of structure, both skeletal and muscular. Nature only modifies the fore-limbs for this new purpose. If we must have wings, we must sacrifice fore-legs. We can not have both without violating the laws of morphology. Finally, ages again passed, and, when time was fully ripe, man was introduced. Now we want some part to perform a new and still more wonderful function. We want a hand, the willing and efficient servant of a rational mind. We know, again, how man would have done this, for we have the result in the centaurs of Greek mythology, in which man’s chest, and arms, and head are added to the body of a quadruped. But natural laws must not be violated, even for man. If we want hands, we must sacrifice feet. Again, therefore, the fore-limbs are modified for this new and exquisite function. Thus, in the fin of a fish, the fore-paw of a reptile or a mammal, the wing of a bird, and the arm and hand of a man, we have the same part, variously modified for many purposes.

Many other illustrations might be taken from the skeleton and from other systems, especially the muscular and nervous. But in the muscular system the modifications have been so extreme that homology is much more difficult to trace, and therefore requires more extensive knowledge than we yet possess, and more extended comparison than has yet been attempted. It has been traced with some success through mammals, and probably will be through air-breathing vertebrates—i. e., also through birds, reptiles, and amphibians; but to trace it through fishes seems almost hopeless. In the case of the nervous system, and especially of the brain, it is again distinct; but this had better be taken up under another head, viz., proofs from ontogeny, [Chapter VI].

In the visceral organs homology is very plain, in fact too plain. There is not modification enough in most cases even to obscure it, because function is the same in all animals. These organs do not, therefore, furnish good illustrations of that essential identity in the midst of adaptive modification which constitutes the argument for the derivative origin of structure. It is the organs of animal life that show this most perfectly, because it is these that take hold on the environment and are modified by it. There are, however, a few striking illustrations to be found among the visceral organs, especially the blood-system. This, however, had better also be deferred to the chapter on ontogeny.


CHAPTER VI.
HOMOLOGIES OF THE ARTICULATE SKELETON.

We have taken the vertebrate skeleton first, only because this department is most familiar. But in reality, the most beautiful illustrations of essential identity of structure in the midst of infinite diversity of adaptive modification for different functions and habits of life, and therefore of common origin from a primal form, are found in the department of articulates. I use the old Cuvierian department articulata, rather than the more modern arthropods, because the former includes worms also. Now, whether worms should be thus included with arthropods, or deserve a whole department to themselves it matters not for our purposes. It is generally admitted that arthropods probably descended from marine worms. They all have the same general plan of skeletal structure. It will suit my purpose, therefore, to regard worms as the lowest form of jointed animals.

Here, then, we have an entirely different plan of structure—a different style of architecture and different mechanical principles of machinery. Instead of a skeleton within and muscles acting on the outside, we have the skeleton on the outside, and muscles acting from within. Instead of two cavities, a neural and visceral, the skeleton forms but one cavity, in which all organs are inclosed and protected. Instead of finding the nerve-axis on the dorsal aspect of the body, we find it on the ventral aspect.