Fig. 62.—Tail of the Archæopteryx.

Fig. 63.—Tail of a modern bird.

Similar changes have taken place in the form and structure of birds’ tails. The earliest bird known—the Jurassic Archæopteryx—had a long reptilian tail of twenty-one joints, each joint bearing a feather on each side, right and left ([Fig. 62]). In the typical modern bird, on the contrary, the tail-joints are diminished in number, shortened up, and enlarged, and give out long feathers, fan-like, to form the so-called tail ([Fig. 63]). The Archæopteryx’ tail is vertebrated, the typical bird’s non-vertebrated. This shortening up of the tail did not take place at once, but gradually. The Cretaceous birds, intermediate in time, had tails intermediate in structure. The Hesperornis of Marsh had twelve joints. At first—in Jurassic—the tail is fully a half of the whole vertebral column. It then gradually shortens up until it becomes the aborted organ of typical modern birds. Now, in embryonic development, the tail of the modern typical bird passes through all these stages. At first the tail is nearly one half the whole vertebral column; then, as development goes on, while the rest of the body grows, the growth of the tail stops, and thus finally becomes the aborted organ we now find. The ontogeny still passes through the stages of the phylogeny. The same is true of all tailless animals. The frog is tailed in the larval condition, because its ancestors were tailed amphibians. Even man himself is endowed with a much more considerable tail, viz., eight or nine joints, in his early embryonic condition.[25]

We have taken all our examples from vertebrates, but quite as many and as good examples might be found among articulates. Insects, in the larval state, are worm-like in form. Hence it is probable that the earliest progenitors of this class were worm-like. Again, some insects have aquatic larvæ. The progenitors of these—in fact, of all insects—were probably aquatic. Crabs, in a larval condition, are long-tailed, and we know that the long-tailed crustaceans (Macrourans) preceded the short-tailed (Brachyourans). Water-breathing animals preceded air-breathers; the same is true in the ontogeny of the frog, of many insects, and, we might add, even of mammals. For the breathing of the fœtus in utero is essentially by exposure of fœtal blood to the oxygenated blood of the mother in a sort of gill-fringes (placental tufts). But why should we multiply examples? The whole of embryology, in every department, is made up of examples of the same law.

Illustration of the Differentiation of the Whole Animal Kingdom.—Finally, the law of differentiation in the evolution of the whole animal kingdom may be well illustrated by means of the different directions taken in the development of the eggs of all the various kinds of animals. Suppose, then, we have one thousand eggs, representing all the different departments, classes, orders, families, etc., of animals. Many of these may doubtless be identified by form or size, or some other superficial character, as the eggs of this or that animal, but structurally they are all alike. At first, i. e., as germ-cells, they all represent the earliest condition of life on the earth, and the lowest forms of life now. If we now watch their development, we find that some remain in this first condition without further change. These we set aside. They are Protozoa. The remainder continue to develop, but at first it would be impossible to say to which of the several departments or primary groups they each belonged. Then, by cell-multiplication, the original single cell becomes a cell-aggregate. It may be compared now to a compound protozoan, such as Foraminifera. The cell-aggregate then differentiates into layers, and forms, in fact, a two-layered sac called a gastrula. This is the structure of some of the lowest cœlenterates, such as the hydra. Thus far all seem to go together. But now, for the first time, the primary groups are declared. If it be a vertebrate, for example, the most fundamental characters—the cerebro-spinal axis, the vertebral column, and the double cavity, neural and visceral, are outlined. Suppose, now, we set aside all other departments, and fix our attention on the vertebrates. At first we could not tell which were mammals, birds, reptiles, or fishes; but after a while the classes are declared. We now set aside all other classes and watch the mammals. After a while the order declares itself. We select the ungulates. Then the family is declared, say the Equidæ; then the genus, Equus; and, lastly, the species, Caballus.[26]

The same would be true if we followed any other line of development, whether in vertebrates or in any other department. Observe, then, that, in following any one line as we have done, there is an increasing specialization, and, if we followed all the lines, an increasing differentiation, like the branching and rebranching of a tree. Now, this is the type and illustration of what took place in the development of the animal kingdom. We conclude that the animal kingdom appeared first as Protozoa, then as living cell-aggregates or compound protozoans, then as gastrula or two-layered sacs with oral opening. Then the great primary departments, unless we except the vertebrates, commenced to separate. This took place before the primordial period; for in the primordial fauna we have all the departments, except vertebrates, already declared. This completely explains why it is that we are able to trace homology only within the limits of each primary group.

But the question has doubtless already occurred to the thoughtful reader, “Why should the steps of the phylogeny be repeated in the ontogeny?” The general answer is doubtless to be found in the law of heredity—that wonderful law, so characteristic of living things. We have compared it to a brief recapitulation from memory—the minor points, especially if they be also early, dropping out. But can we not explain it further? It is probable that we find a more special explanation in “the law of acceleration,” first brought forward by Prof. Cope. By the law of heredity each generation repeats the form and structure of the previous, and in the order in which they successively appeared. But there is a tendency for each successively-appearing character to appear a little earlier in each successive generation; and by this means time is left over for the introduction of still higher new characters. Thus, characters which were once adult are pushed back to the young, and then still back to the embryo, and thus place and time are made for each generation to push on still higher. The law of acceleration is a sort of young-Americanism in the animal kingdom. If our boys acquire knowledge and character similar to that of adults of a few generations back, they will have time while still young and plastic to press forward to still higher planes.

Proofs from Rudimentary and Useless Organs.—These have to a large extent been anticipated under previous heads. The tails of birds and the gill-arches of reptiles are rudimentary. The finger-bones of a whale’s paddle or a turtle’s flipper may be regarded as useless, at least so far as the exact number of constituent pieces is concerned; for an extended surface, without visible joints or separate fingers, is all that is seen, and apparently all that is required. The splint-bones of a horse’s foot or the dew-claws of a dog’s foot are certainly useless. We have already, in speaking of modifications of structure and of embryonic conditions, given many examples of this kind, but it may be well to add some striking examples with this special point in view.