It is well known that the kinds of organisms found in widely-separated countries differ more or less conspicuously. The traveler in Australia or in Africa finds all, the traveler in Europe nearly all, the animals and plants wholly different from those he has been accustomed to see at home. Even the visitor from the Atlantic to the Pacific coast, if he observes at all, will find nearly all organisms strange to him. The facts of geographical diversity of organisms are so numerous and complex that, at first sight, they seem utterly lawless. Only recently this subject has been redeemed from chaos and reduced to something like order and law by the light thrown upon it by the theory of evolution. We will give, in very brief outline, the most important facts, and then show how they may be explained.

Geographical Faunas and Floras.—The group of animals and plants inhabiting any locality, whether peculiar to that locality or not, is called, in popular language, its fauna and flora. But, in a true scientific sense, a fauna and flora is a natural group of animals and plants in one place, differing more or less conspicuously from other groups in other places, and separated from them by physico-geographical boundaries, or by physical conditions of some kind. The members of such a group can only exist in certain harmonic relations with external conditions, and with one another. These relations with one another are often complex and nicely adjusted, so that change in one term is propagated through the whole series of terms, giving rise often to the most unexpected results, until finally a new equilibrium is established. Thus, the destruction of certain insectivorous birds, in mere wanton sport, may give rise to the multiplication of insect pests, and this to the destruction of certain kinds of plants, and this to the diminution of certain herbivores, and this in its turn to the disappearance of certain carnivores. It is well known that the introduction of rabbits into New Zealand and Australia has produced the most unexpectedly disastrous effect upon certain crops, on account of the absence of the fierce and active carnivores which keep in check their excessive multiplication in Europe.

Now, among the physical conditions which limit faunas and floras, and separate them from each other, the most important and universal is temperature.

Temperature-Regions.—If we travel from equator to pole, we pass through mean temperatures varying from 80° to 0°. This gives rise to a very regular zonal arrangement of plant-forms: 1. We have first a region in which palms and palm-like forms are abundant and characteristic, and which therefore may be called the region of palms. It corresponds with the tropic zone. 2. We next have a region in which hard-wood foliferous trees are most abundant and characteristic; first mostly evergreens and then deciduous trees, and therefore may be called the region of hard-wood forests. This corresponds with the temperate-zone. 3. Then we find a region characterized predominantly by pines and pine-like trees and birches, and may be called the region of pines. This is the sub-Arctic region. 4. Then a region without trees, but only shrubs and summer plants. This is the Arctic region. 5. And, finally, an almost wholly plantless region of perpetual ice—the polar region.

These regions are determined wholly by temperature, and therefore, in going up a mountain-slope to snowy summits, we pass through similar regions in smaller space. For example, in going from sea-level to the summits of the Sierra, 14,000 to 15,000 feet high, we commence in a region of predominantly hard-wood trees; but at 3,000 feet the forests become almost wholly coniferous, at 11,000 to 12,000 feet the vegetation becomes shrubby, and at 13,000 feet we reach perpetual snow.

We have taken plants first, because these, being fixed to the soil and incapable of voluntary seasonal migrations, are more strictly and simply limited by temperature—i. e., the arrangement of different kinds in zones is more simple and conspicuous. But the same rule holds also for animals. In passing from equator to pole, animal kinds also change frequently, so that there are many temperature-faunas in which the animals are all very different. In both animals and plants, species, genera, families, etc., are limited by temperature. These are familiar facts; we recall them to the reader in order that we may base thereon a clearer definition of these limits.

More Perfect Definition of Regions.—1. The area over which any form spreads is called its range. Now, the range of a species is more restricted than that of a genus, because, when a species is limited by temperature, another species of the same genus may carry on the genus. For the same reason the range of a family is usually greater than that of a genus, and so on for higher classification-groups. For example, pines range on the slopes of the Sierra from about 2,000 feet to 11,000 feet, but not the same species. In ascending, we meet first the nut-pine (Pinus Sabiniana), then the yellow-pine (P. ponderosa), then the sugar-pine (P. Lambertiana), then the tamarack-pine (P. contorta), and last, the Pinus flexilis, etc.

Fig. 64.

2. Where two contiguous temperature-regions come in contact, there is no sharp line between; on the contrary, they shade gradually, almost imperceptibly, into one another, the ranges of species overlapping and interpenetrating, and the two species coexisting on the borders of their ranges. This is represented by the diagram ([Fig. 64]), in which the horizontal lines represent the north and south ranges of species of two groups, A and B, separated by the dotted line.