What is the explanation of these remarkable facts? We find the sufficient answer in the fact that Australia has been long isolated from all other countries. While geographical changes in geological times have mingled more or less the organic forms of other countries, and the sharp struggle for life has produced more rapid advance and the production of many new and higher forms better armed for the battle of life, Australia has remained isolated from competition, and therefore comparatively unprogressive.

Can we tell when Australia was finally isolated? Approximately we can. The class of mammals is divided into two groups, which differ widely from each other; so widely, that they are called sub-classes. These are placental mammals, or true typical mammals, and non-placental or reptilian mammals. The non-placentals include only the marsupials and the monotremes (ornithorhyncus and echidna). The monotremes actually lay eggs and incubate them. In the marsupials the embryo has no placental connection with the mother, and is born in a very imperfect condition, utterly unfit for independent life, and placed in the pouch (marsupium), and permanently attached there to the teat until it is capable of independent life; after which only it voluntarily nurses like other new-borns. In other words, the gestation commenced in the womb is completed in the pouch. The uterine gestation in the opossum is only seventeen days, while the marsupial gestation is about two and a half months. In a kangaroo seven feet high in sitting position the embryo at birth is only one inch long—a pink, hairless, almost amorphous mass. The monotremes are pure oviparous animals, like birds and reptiles. The marsupials might well be called semi-oviparous. In pure egg-layers the whole embryonic development is outside of the body; in pure young-bearers the whole is within the body; in marsupials it is partly within and partly without. Now—1. The monotremes are found nowhere but in Australia and the neighboring New Guinea. 2. The marsupials are also all confined to the Australian region, except a few oppossums in America. 3. There are some two hundred and thirty species of non-placentals in the Australian region. 4. As already said, there are no true mammals at all in Australia, except a few bats and rats which have come accidentally from abroad. 5. But non-placentals existed abundantly in Mesozoic times everywhere, both in Europ-Asia and in America, while true mammals did not appear at all on the surface of the earth until the Tertiary, when they almost immediately became very abundant everywhere, except in Australia. Evidently, therefore, Australia was isolated before the Tertiary. The enormous difference between its fauna and flora and those of other countries is due to at least three things: 1. So long an isolation necessarily produced great divergence of forms. This alone, however, would not affect the grade of organization. 2. Saved from wide migrations, and especially invasions from Eurasia, the great field of competitive struggle, it was left far behind in the race of evolution. Hence many of its forms are archaic; its mammalian fauna, for instance, is still in the Mesozoic stage. 3. Its distance from other large continents is so great that accidental colonization has been very slight, only extending to a few bats and a few rats.

I stop a moment to insist on the effect of competitive struggle in developing organic forms strong for the battle of life. Of all the continents, Eurasia has been the scene of most frequent geological changes, and therefore the arena of fiercest competitive struggle through wide and frequent migrations. Eurasian species, therefore, are the strongest of all. They have conquered wherever they have gone. Species in isolated regions are usually the weakest. The great moas and the dodo could not have continued to exist unless protected in a sort of bomb-proof. Kangaroos would now be quickly exterminated by the introduction of fierce Eurasian carnivores.

2. Africa.—The fauna of that part of Africa north of Sahara is essentially Mediterranean—i. e., a sub-group of the Eurasian. Sahara, rather than the Mediterranean Sea, is the true intercontinental barrier. The true African region, therefore, is south of Sahara. Now, according to Mr. Wallace, whom I mainly follow here, the true African mammalian fauna consists of two very different groups of animals. The one is a group of very small, curious animals, mostly low forms of insectivores and lemurs, very peculiar to this region, though more resembling those of Madagascar than of any other region; the other is a group of large and powerful animals which dominate the region. These latter are similar to, though not identical with, those which inhabited Eurasia in Pliocene times. The great carnivores, pachyderms, and ruminants of the region are examples of this group. Now, the explanation of these facts is as follows: The indigenes of Africa are the animals of the first group. Africa, in Tertiary times, was isolated from the great field of combat, Eurasia, and therefore its animals were small, of low grade, and peculiar. During later Tertiary (Pliocene) times, then, Africa was inhabited by animals of the first group, while Eurasia was dominated by animals of the second group. These two groups were then separated by the Desert of Sahara, or else by a sea in that region. Some time during the Glacial epoch geographical changes removed this barrier, and climatic changes drove the Eurasian animals southward into Africa, where, finding congenial climate, they took possession of the continent, dominating the feebler natives. Subsequently they were isolated there by the formation of the desert, and the process of divergence commenced, and has gone on to the formation of many new forms. Meanwhile the change, partly by extinction and partly by modification, has gone on still more rapidly in Eurasia, but in a different direction. Hence, Africa is regarded as one of the primary faunal regions.

3. Madagascar.—This, next to the Australian, is probably the most peculiar faunal region known. There is probably not a single mammalian species found there which is known to occur anywhere else. It is remarkable also as the principal home of that strange, generalized, ancient form of monkeys—the lemurs. And yet its animals, though very different, have a distant resemblance to those of Africa; not, however, to the present dominant type, but to those we have called the indigenes. Not one of the northern invaders is found there. The obvious conclusion from these facts is, that Madagascar was formerly united with Africa, and both were occupied by the same mammalian fauna (which may be called African indigenes, although they were considerably different from their descendants of the present day), but became separated before the northern invasion. The effect of this invasion was to hasten the steps of change in the indigenous fauna of Africa, partly by extermination, partly by modification, while the isolated portion in Madagascar went on at the usual slow rate of change in isolated regions. The time since the separation (which was certainly during the Tertiary period) has been sufficiently long to produce very great divergence in both, but especially in the African indigenes. In the fauna of Madagascar, therefore, we have a nearer approach to the original fauna of both. On account of this long isolation, we have here many ancient types which are extinct elsewhere. The lemurs are such an ancient type. These are a wonderfully-generalized type of monkeys—a connecting link between monkeys and other mammals, especially insectivores. As might be supposed, from the law of differentiation, already explained ([page 11]), they are the earliest form, the progenitors, of monkeys. In fact, in early Tertiary times, they were found not only in Africa and Madagascar, but all over the earth, as the only representatives of the monkey family. The true monkeys were not introduced until the mid-Tertiary. In Eurasia and in America (which at that time was probably connected with Eurasia) wide migrations and frequent conflicts of faunas produced comparatively rapid evolution of new and higher forms, while in isolated Africa old types continued until the invasion. Madagascar was spared this invasion, and therefore old types are still preserved there. At present, at least three quarters of all lemurs are confined to Madagascar, although a few species are still found in Africa and in the great East Indian islands.

4. Island-Life.—Mr. Wallace has divided islands into two kinds, continental and oceanic islands. The division is undoubtedly a good one, although we may not always be able to refer an example with certainty to the one or the other class. Continental islands are those on the borders of continents, and separated from the latter only by shallow water. Oceanic islands are those, usually very small, found in the midst of the ocean, with abyssal depth all about. Continental islands may be regarded as appendages to the neighboring continent—as outliers of continents separated by submergence, and have, in fact, been thus formed. Oceanic islands have been formed geologically recently by volcanic action building up from the sea-bottom. Continental islands have a continental structure—i. e., they are composed of stratified as well as of igneous rocks. Their structure is a record of geological history, like that of the neighboring continent. Oceanic islands are composed wholly of volcanic rocks; or, if there be any stratified rocks, these are only of the most recent date. As examples of continental islands we have New Zealand as an appendage of Australia, the great East Indian (Borneo, Java, Sumatra, etc.) and the Japanese Islands, etc., as appendages of Asia; the British Islands, appendages of Europe; the West Indian Islands, appendages of America; Madagascar, an appendage of Africa, etc., etc. As examples of oceanic islands we have the Azores and Bermudas in the Atlantic, and the Polynesian islands in mid-Pacific.

a. Continental Islands.—Now, the fauna of continental islands, as might be expected from the mode of origin of these islands, is similar to, though not identical with, that of the neighboring continent; the amount of difference being in proportion to the length of time since they were separated and the width of the separation. Madagascar, for example, has been long separated from its parent continent, and by a wide and deep channel. Its fauna, therefore, differs greatly from that of Africa, although resembling it more than that of any other country. The separation of New Zealand from Australia has been not quite so long, and the divergence, therefore, is not so great. These two will be sufficient illustrative examples of long separation, and therefore of great differentiation of forms.

Fig. 67.—Map of outline of coast of Western Europe, if elevated 600 feet (after Lyell).

On the other hand, the British Isles are an excellent example of comparatively recent separation. These isles have probably been several times united and separated from Europe, but we are here concerned only with the more recent. They are now separated from the continent and from one another only by shallow seas. An elevation of less than six hundred feet—geologically a very small change—would bare the bottoms of the Irish and English Channels and the North Sea, and connect these islands with one another and with the continent ([Fig. 67]). Now, it is well known that there were during the Glacial epoch, and subsequently, several oscillations of level sufficient to connect and separate these islands. In the mid-Glacial epoch the British Islands, by submergence, were nearly obliterated, being reduced to an archipelago of small islets representing the high mountains of Wales and Scotland. The Pliocene fauna and flora were, therefore, largely exterminated. During the close of that epoch they were elevated above the present condition and broadly connected with the continent ([Fig. 67]), and the newly-exposed land was taken possession of by European species, man among the number. Still later—i. e., at the beginning of the present epoch—the islands by subsidence were again separated, but not widely, from the continent. This is the condition now. What, then, was the result? 1. The fauna and flora of the British Isles are substantially the same, but less rich in species than that of Continental Europe, some of the European species being wanting. This shows that the last connection was not a long one; the colonization had not been completed before re-isolation. 2. This poverty of species is more conspicuous in Ireland, because colonization is progressive in space as well as in time. Some species had not reached so far when Ireland was re-isolated from England. The conspicuous absence of snakes, for example, is thus accounted for. There is, we all know, another theory to account for this, but we prefer the natural one. 3. The difference between British and European fauna and flora is very small, it is true, but there is some difference, varietal if not specific. The reason is, that the time since separation is too small to produce much divergence, and the width of the existing barriers not great enough to prevent colonization by accidental causes.