Fig. 69.

It is generally admitted that long-continued very close breeding has a bad effect. Even in plants, Darwin has shown that cross-fertilization has better effect than self-fertilization, this last being of course the closest possible breeding. But it is probable that the principal bad effect is not on the stock but on the process of evolution. Very close breeding weakens the stock, ordinary breeding of individual differences maintains the stock at the ordinary level and fixes it. Cross-breeding of varieties strengthens the stock, and also (and this is its main advantage) produces plasticity in the stock, gives rise to strong divergent variations, or even sports, and thus becomes a main agent in evolution. It is probable, moreover, that the higher the function the more sensitive is it to these effects of breeding. Therefore, the effect is greater in man than in any other animal. It is true that many have doubted the bad effect of close breeding in man, and have brought forward formidable statistics to substantiate their position; but these doubtless take no account of the most important function, the psychic, and especially the most important element in every function, so far as evolution or progress is concerned, viz., plasticity or capability of progressive improvement. The tendency of consanguineous breeding, or even the breeding of persons of like character and experiences, as in an isolated community, is, if not to deteriorate the physique, at least to fix, stereotype the character, and thus to check social progress. Contrarily, the crossing of varieties of the same race seems not only to strengthen but, by the diverse inheritance, to produce plasticity of character and capacity for progress. But the difference between the primary races seems too great for crossing with advantage. Some degree of sexual repugnance which undoubtedly exists between the primary races is the psychical sign of this fact.[32]

If, now, we go back to what we said before taking up this subject of the effect of cross-breeding, we at once see that there is an apparent flaw in all our reasonings. If close in-and-in breeding produced better and more numerous offspring than cross-breeding between slight varieties, then, indeed, such varieties would be preserved, and increase in divergence from generation to generation until they became species. Or, in any case, if, in any way, divergence could reach the point of extreme varieties or races, or what are called sub-species, then commencing cross-sterility would complete the separation, and thus form true species. But how can the process of progressive divergence begin, when slight varieties are even more fertile by cross-breeding than by close breeding? Is it not evident that, with every generation, the slight varieties would cross-breed with one another and with the parent stock, and thus all varietal differences would be funded into a common stock, and the type would be preserved unchanged? This, as already pointed out ([p. 76]), has always been the chief difficulty in the way of imagining how varieties can grow into species; and the difficulty is only increased by our discussion of the law of cross-breeding. Now, just here, Dr. Romanes’s most important and prolific idea comes to our help, and, as it seems to us, completely solves the difficulty.

According to Dr. Romanes, no organ is so subject to variation as the reproductive, and this in no respect so much as in degrees and kinds of fertility—we might almost say so subject to freaks of cross-sterility. Now, suppose we start with any well-defined species in a state of nature. With every generation there are many slightly divergent individual varieties, some greater and some less; but these are all immediately swamped by crossing with one another and with the parent stock, and the species remains unchanged. But suppose among these divergent variations there arise, from time to time, some which affect the reproductive organs in such wise that the variety, though perfectly fertile with its own kind, is infertile, or imperfectly fertile, with other varieties, and especially with the parent stock. The change may be only in the time of flowering in plants, or season of heat in animals, or it may be actual infertility in sexual union. Right here we have the beginning of a new species. The variety is sexually isolated from the parent stock by cross-sterility, and therefore all its peculiarities, however trivial, are preserved by true breeding. Cross-breeding is necessary to make species, but true breeding preserves them. Cross-breeding tends ever to make varieties, but immediately destroys them again. This constant forming and swamping, separating and again merging of varieties, like mixing of dough, makes the whole mass (stock) more and more plastic and subject to variety. This plasticity finally gives rise to varieties of the kind which produces species by sexual isolation. By continued merging the centrifugal forces continually increase, but are continually repressed by crossing, until finally varieties break away to form species.

Now it is easy to see, from this point of view, why artificial varieties are cross-fertile. It is because in artificial breeding we are intent only on making varieties in form, size, color, etc., and not at all on making any characterized by cross-sterility with the parent stock. Cross-sterility with the parent stock, or with other varieties, would be of no advantage, because we control the breeding, and can breed true if we desire. Sexual isolation is not necessary, because we can use physical isolation. On the contrary, such cross-sterility would be a positive disadvantage to the breeder, by limiting the range of his experiments just where they would be most prolific in making new varieties. Hence, as might be expected, all domestic varieties are cross-fertile, unless it be the extreme varieties, which may, in some instances, have passed the limit of greatest fertility.

If this idea be true, then species which have originated in the same locality ought to be always cross-sterile, but species which have grown up apart, in widely separated geographical regions, ought to be sometimes cross-fertile, because they were isolated by physical not by sexual barriers. Such, Dr. Romanes thinks, is a fact. It is, however, a very important point, which ought to be carefully investigated. We say “sometimes.” It is probable that most geographical species also are cross-sterile; for, although the isolation by cross-sterility of slight varieties be the main cause of the origin of species, yet a species formed by isolation of any other kind will gradually become cross-sterile with other species. Although cross-sterility be the main cause of divergence, yet divergence beyond a certain limit, however caused, will bring about cross-sterility, because the reproductive organs will partake of the general change going on in every part.

Application.—Suppose, then, a species breeding naturally in a wild state. Individual varieties are constantly being formed and again funded back into the common stock by cross-breeding. If the varieties thus formed be decided, the cross-breeding will strengthen the stock, and especially will preserve and increase its plasticity or tendency to variation. Finally, among the widely divergent varieties there is one affecting the reproductive organs of several individuals in such wise that they are infertile, or imperfectly fertile, with the parent stock, though perfectly fertile among themselves. These form a new species, which continue to increase indefinitely.

Objection answered.—This view completes the answer to an objection which is often made to evolution: “If natural species are formed by transmutation, why is it we do not find intermediate links? Why is not organic nature made up only of individual forms, shading insensibly into each other in such wise that classification becomes a mere device to handle more conveniently complex material? Why is it that groups, especially species, are marked out with hard and fast lines?” We have heretofore answered this by saying that intermediate forms are eliminated. So they are, but how? Dr. Romanes’s idea of physiological selection largely answers this. It is by the funding of ordinary varieties into a common parental stock by crossing, and separating specific varieties by cross-sterility. Thus the organic field is broken up into points about which variations oscillate. As every mass of matter, when closely examined, is found to consist of aggregations about centers of cohesive attraction as discrete granules or crystals, and only exceptionally do we find a homogeneous vitreous structure; even so organic forms aggregate about points of sexual attraction, and the whole mass consists of discrete species, and only exceptionally—i. e., in domestication—do we find insensible shadings. Now, species are the smallest aggregate of individuals, as granules are of molecules. Species are more distinctly marked out by hard and fast lines than are other taxonomic groups only because they are the last, going downward, that are cross-sterile—because right here is the change from cross-sterility to cross-fertility.

If this view be true, then in the same locality species ought to be always distinct and without shadings. If we find shadings at all, it ought to be in intermediate geographical regions, where isolation is not sexual but physical. Now, this is exactly what we find to be the fact. Innumerable examples of such intermediate forms in intermediate geographical regions are now known, especially among birds and reptiles, and examples have so increased in modern times, by closer study, that naturalists, especially ornithologists, have been compelled to resort to a trinomial nomenclature in order to designate these geographical sub-species.[33]