c. Law of Cyclical Movement.—The movement of evolution has ever been onward and upward, it is true, but not at uniform rate in the whole, and especially in the parts. On the contrary, it has plainly moved in successive cycles. The tide of evolution rose ever higher and higher, without ebb, but it nevertheless came in successive waves, each higher than the preceding and overborne by the succeeding. These successive cycles are the dynasties or reigns of Agassiz, and ages of Dana; the reign of mollusks, the reign of fishes, of reptiles, of mammals, and finally of man. During the early Palæozoic times (Cambrian and Silurian) there were no vertebrates.[8] But never in the history of the earth were mollusks of greater size, number, and variety of form than then. They were truly the rulers of these early seas. In the absence of competition of still higher animals, they had things all their own way, and therefore grew into a great monopoly of power. In the later Palæozoic (Devonian) fishes were introduced. They increased rapidly in size, number, and variety; and being of higher organization they quickly usurped the empire of the seas, while the mollusca dwindled in size and importance, and sought safety in a less conspicuous position. In the Mesozoic times, reptiles, introduced a little earlier,[9] finding congenial conditions and an unoccupied place above, rapidly increased in number, variety, and size, until sea and land seem to have swarmed with them. Never before or since have reptiles existed in such numbers, in such variety of form, or assumed such huge proportions; nor have they ever since been so highly organized as then. They quickly became rulers in every realm of Nature—rulers of the sea, swimming reptiles; rulers of the land, walking reptiles; and rulers of the air, flying reptiles. In the unequal contest, fishes therefore sought safety in subordination. Meanwhile mammals were introduced in the Mesozoic, but small in size, low in type (marsupials), and by no means able to contest the empire with the great reptiles. But in the Cenozoic (Tertiary) the conditions apparently becoming favorable for their development, they rapidly increased in number, size, variety, and grade of organization, and quickly overpowered the great reptiles, which almost immediately sank into the subordinate position in which we now find them, and thus found comparative safety. Finally, in the Quaternary, appeared man, contending doubtfully for a while, with the great mammals, but soon (in Psychozoic) acquiring mastery through superior intelligence. The huge and dangerous mammals were destroyed and are still being destroyed; the useful animals and plants were preserved and made subservient to his wants; and all things on the face of the earth are being readjusted to the requirements of his rule. In all cases it will be observed that the rulers were such because, by reason of strength, organization, and intelligence, they were fittest to rule. There is always room at the top. To illustrate again by a growing tree: This successive culmination of higher and higher classes may be compared to the flowering and fruiting of successively higher and higher branches. Each uppermost branch, under the genial heat and light of direct sunshine, received in abundance by reason of position, grew rapidly, flowered, and fruited; but quickly dwindled when overshadowed by still higher branches, which, in their turn, monopolized for a time the precious sunshine.
But observe, furthermore: when each ruling class declined in importance, it did not perish, but continued in a subordinate position. Thus, the whole organic kingdom became not only higher and higher in its highest forms, but also more and more complex in its structure and in the interaction of its correlated parts. The whole process and its result is roughly represented in the accompanying diagram, [Fig. 1], in which A B represents the course of geological time and the curve, the rise, culmination, and decline of successive dominant classes.
MOLLUSCS—Silurian.
FISHES—Devon. and Carb.
REEPTILES—Mesozoic.
MAMMALS—Tert’y and Quat.
MAN—Present.
Fig. 1.
The Above Three Laws Are Laws of Evolution.
These three laws we have shown are distinctly recognizable in the succession of organic forms in the geological history of the earth. They are, therefore, undoubtedly the general laws of succession. Are they also laws of evolution? Are they also discoverable in embryonic development, the type of evolution? They are, as we now proceed to show:
Differentiation.—In reproduction the new individual appears: 1. As a germ-cell—a single microscopic living cell. 2. Then, by growth and multiplication of cells, it becomes an egg. This may be characterized as an aggregate of similar cells, and therefore is not yet differentiated into tissues and organs. In other words, it is not yet visibly organized; for organization may be defined as the possession of different parts, performing different functions, and all co-operating for one given end, viz., the life and well-being of the organism. 3. Then commences the really characteristic process of development, viz., differentiation or diversification. The cells are at first all alike in form and function, for all are globular in form, and each performs all the functions necessary for life. From this common point now commences development in different directions, which may be compared to a branching and rebranching, with more and more complex results, according as the animal is higher in the scale of organization and advances toward a state of maturity. First, the cell-aggregate (egg) separates into three distinct layers of cells, called ecto-blast, endo-blast, and meso-blast. These by further differentiation form the three fundamental groups of organs and functions, viz., the nervous system, the nutritive system, and the blood system: the first presiding over the exchange of force or influence, by action and reaction with the environment, and between the different parts of the organism; the second presiding over the exchange of matter with the environment, by absorption and elimination; the third presiding over exchanges of matter between different parts of the organism. The first system of functions and organs may be compared to a system of telegraphy, foreign and domestic; the second to foreign commerce; the third to an internal carrying-trade. Following out any one of these groups in higher animals, say the nervous system, it quickly differentiates again into two sub-systems, viz., cerebro-spinal and ganglionic, each having its own distinctive functions, which we can not stop to explain. Then the cerebro-spinal again differentiates into voluntary and reflex systems. All of these have meanwhile separated into sensory and motor centers and fibers. Then, taking only the sensory fibers, these again are differentiated into five special senses, each having a wholly different function. Then, finally, taking any one of these, say the sense of touch or feeling, this again is differentiated into many kinds of fibers, each responding to a different impression, some to heat, others to cold, still others to pressure, etc. We have taken the nervous system; but the same differentiation and redifferentiation takes place in all other systems, and is carried to higher and higher points according to the position in the scale of the animal which is to be formed.
Or, to vary the mode of presentation a little, the cells of the original aggregate, commencing all alike, immediately begin to take on different forms, in order to perform different functions. Some cells take on a certain form and aggregate themselves to form a peculiar tissue which we call muscle, and which does nothing else, can do nothing else, than contract under stimulus. Another group of cells take on another peculiar form and aggregate themselves to form another and very different tissue, viz., nervous tissue, which does nothing and can do nothing but carry influence back and forth between the great external world and the little world of consciousness within. Still another group of cells take still another form and aggregate to form still another tissue, viz., the epithelial, whose only function is to absorb nutritive and eliminate waste matters. Thus, by differentiation of form and limitation of function, or division of labor, the different parts of the organism are bound more and more closely together by mutual dependence, and the whole becomes more and more distinctly individuated, and separation of parts becomes more and more a mutilation, and finally becomes impossible without death. This process, as already said, reaches its highest point only in the later stages of development of the highest animals.
Progress.—The law of progress is, of course, admitted to be a law of ontogeny; but observe here, also, it is true only of the whole and not necessarily of all the parts, except from the point of view of the whole. Thus, for example, starting all from a common form or generalized type, some cells advance to the dignity of brain-cells, whose function is somehow connected with the generation or at least the manifestation of thought, will, and emotion; other cells descend to the position of kidney-cells, whose sole function is the excretion of urine. But here, also, the highest cells are successively higher, and the whole aggregate is successively nobler and more complex. It is again a branching and rebranching, in every direction, some going upward, some downward, some horizontally, anywhere, everywhere, to increase the complexity of relations internal and external, and therefore to elevate the plane of the whole.