The next attempt worthy of attention in this rapid sketch is that of Robert Chambers, in a little volume entitled “Vestiges of a Natural History of Creation,” published in 1844. It was essentially a reproduction of Lamarck’s views in a more popular form. It was not a truly scientific work nor written by a scientific man. It was rather an appeal from the too technical court of science to the supposed wider and more unprejudiced court of popular intelligence. It was therefore far more eloquent than accurate; far more specious than profound. It was, indeed, full of false facts and inconsequent reasonings. Nevertheless, it produced a very strong impression on the thinking, popular mind. But it also quickly fell, pierced by keen shafts of ridicule, and crushed beneath the heavy weight of the authority of all the most prominent naturalists of that time, with Agassiz at their head. The question for the time seemed closed. I believe, again, it was best so, for the time was not yet fully ripe.

I know full well that many think with Haeckel that biology was kept back half a century by the baneful authority of Cuvier and Agassiz; but I can not think so. The hypothesis was contrary to the facts of science as then known and understood. It was conceived in the spirit of baseless speculation, rather than of cautious induction; of skillful elaboration rather than of earnest truth-seeking. Its general acceptance would have debauched the true spirit of science. I repeat it: the time was not yet ripe for a scientific theory. The ground must first be cleared and a solid foundation built; an insuperable obstacle to hearty rational acceptance must first be removed, and an inductive basis must be laid.

The Obstacle removed.—The obstacle in the way of the acceptance of the derivative origin of species was the then prevalent notion concerning the nature of life. We must briefly sketch the change which has taken place in the last forty years in our ideas on this subject.

Until about forty years ago, the different forces of Nature, such as gravity, electricity, magnetism, light, heat, chemical affinity, etc., were supposed to be entirely distinct. The realm of Nature was divided up into a number of distinct and independent principalities, each subject to its own sovereign force and ruled by its own petty laws. About that time it began to be evident, and is now universally acknowledged, that all these forces are but different forms of one, universal, omnipresent energy, and are transmutable unto one another back and forth without loss. This is the doctrine of correlation of forces and conservation of energy, one of the grandest ideas of modern times. But one force seemed still to be an exception. Life-force was still believed to be a peculiar, mysterious principle or entity, standing above other forces and subordinating them; not correlated with, not transmutable unto, nor derivable from, other and lower forces, and therefore in some sense supernatural. Now, if this be true of living forces, it is perfectly natural, yea, almost necessary, to believe that living forms are wholly different from other forms in their origin. New forms of dead matter may be derived, but new living forms are underived. Other new forms come by natural process, new organic forms by supernatural process. The conclusion was almost unavoidable. But soon vital force also yielded to the general law of correlation of natural forces. Vital forces are also transmutable into and derivable from physical and chemical forces. Sun-force, falling on the green leaves of plants, is absorbed and converted into vital force, disappears as light to reappear as life. The amount of life-force generated is measured by the amount of light extinguished. The same is true of animal life. As in the steam-engine the locomotive energy is derived from the fuel consumed and measured by its amount, so in the animal body, the animal heat and animal force are derived from and measured by the food and tissue consumed by combustion. Thus, vital force may be regarded as so much force withdrawn from the general fund of chemical and physical forces, to be again refunded without loss at death. This obstacle is, therefore, now removed. If vital force falls in the same category as other natural forces, there is no reason why living forms should not fall into the same category in this regard as other natural forms. If new forms of dead matter are derived from old forms by modification, according to physical laws, there is no reason why new living forms should not also be derived from old forms by modification according to physiological laws. Thus, at last, the obstacle was removed—the ground was cleared.

The Basis laid.—But Science is not content with removal of a priori objections. She must also have positive proofs. The ground must not only be cleared, but a true inductive basis of facts, and especially of laws and methods, must be laid. This was the life-work of Agassiz. Yes, as strange as it may seem to some, it is nevertheless true that the whole inductive basis, upon which was afterward built the modern theory of evolution, was laid by Agassiz, although he himself persistently refused to build upon it any really scientific superstructure. It is plain, then, that all attempts at building previous to Agassiz’s work must, of necessity, have resulted in an unsubstantial structure—an edifice built on sand, which could not and ought not to stand. I must stop here in order to explain somewhat fully this important point, and thus to give due credit to the work of Agassiz.

The title of any scientist to greatness must be determined, not so much by the multitude of new facts he has discovered as by the new laws he has established, and especially by the new methods he has inaugurated or perfected. Now, I think it can be shown that to Agassiz, more than to any other man, is due the credit of having established the laws of succession of living forms in the geological history of the earth—laws upon which must rest any true theory of evolution. Also, that to him, more than to any other man, is due the credit of having perfected the method (method of comparison) by the use of which alone biological science has advanced so rapidly in modern times. This is high praise. I wish to justify it. I begin with the method.

Scientific methods bear the same relation to intellectual progress that tools, instruments, machines, mechanical contrivances of all sorts, bear to material progress. They are intellectual contrivances—indirect ways of accomplishing results far too hard for bare-handed, unaided intellectual strength. As the civilized man has little or no advantage over the savage in bare-handed strength of muscle, and the enormous superiority of the latter in accomplishing material results is due wholly to the use of mechanical contrivances or machines; even so, in the higher sphere of intellect, the scientist makes no pretension to the possession of greater unaided intellectual strength than belongs to the uncultured man, or even perhaps to the savage. The amazing intellectual results achieved by science are due wholly to the use of intellectual contrivances or scientific methods. As in the lower sphere of material progress the greatest benefactors of the race are the inventors or perfecters of new mechanical contrivances or machines, so also in the higher sphere of intellectual progress the greatest benefactors of the race are the inventors or perfecters of new intellectual contrivances or methods of research.

To illustrate the power of methods, and the necessity of their use, take the case of the method of notation, so characteristic of mathematics, and take it even in its simplest and most familiar form: Nine numeral figures, having each a value of its own, and another dependent upon its position; a few letters, a and b, and x and y, connected by symbols, + and-and =: that is all. And yet, by the use of this simple contrivance, the dullest school-boy accomplishes intellectual results which would defy the utmost efforts of the unaided strength of the greatest genius. And this is only the simplest tool-form of this method. Think of the results accomplished by the use of the more complex machinery of the higher mathematics!

Take next the method of experiment so characteristic of physics and chemistry. The phenomena of the external world are far too complex and far too much affected by disturbing forces and modifying conditions to be understood at once by bare, unaided intellectual insight. They must first be simplified. The physicist, therefore, contrives artificial phenomena under ideal conditions. He removes one complicating condition after another, one disturbing cause and then another, watching meanwhile the result, until finally the necessary condition and the true cause are discovered. On this method rests the whole fabric of the physical and chemical sciences.

But when we rise still higher, viz., into the plane of life, the phenomena of Nature become still more complex and difficult to understand directly; and yet just here, where we are the most powerless without some method, our method of experiment almost wholly fails us. The phenomena of life are not only far more complex than those of dead matter, but the conditions of life are so nicely adjusted, the equilibrium of forces so delicately balanced, that, when we attempt to introduce our clumsy hands in the way of experiment, we are in danger of overthrowing the equilibrium, of destroying the conditions of the experiment, viz., life; and then the whole problem falls immediately into the domain of chemistry. What shall we do? In this dilemma we find that Nature herself has already prepared for us, ready to hand, an elaborate series of simplified conditions equivalent to experiments. The phenomena of life are, indeed, far too complex to be at once understood—the problem of life too hard to be solved—in the higher animals; but, as we go down the animal scale, complicating conditions are removed one by one, the phenomena of life become simpler and simpler, until in the lowest microscopic cell or spherule of living protoplasm we finally reach the simplest possible expression of life. The equation of life is reduced to its simplest terms, and now, if ever, we begin to understand the true value of the unknown quantity. This is the natural history series, or Taxonomic series, already spoken of on [page 10]. Again, Nature has prepared, and is now preparing daily before our eyes, another series of gradually simplified conditions. Commencing with the mature condition of one of the higher animals—for example, man—and going backward along the line of individual history through the stages of infant embryo, egg and germ, we find again the phenomena of life becoming simpler and simpler, until we again reach the simplest conceivable condition in the single microscopic cell or spherule of living protoplasm. This, as already explained, is the embryonic or Ontogenic series. Again, that there be no excuse for man’s ignorance of the laws of life, Nature has prepared still another series; and this the grandest of all, for it is the cause of both the others. Commencing with the plants and animals of the present epoch, and going back along the track of geological times, through Cenozoic, Mesozoic, Palæozoic, Eozoic, to the very dawn of life—the first syllable of recorded time—and we find again a series of organic forms growing simpler and simpler, until, if we could find the very first, we would undoubtedly again reach the simplest condition in the lowest conceivable forms of life. This, as we have already seen, is the geologic or evolution, or Phylogenic series. We have already explained these three series, only in this connection it suits our purpose to take the terms backward.