We have already seen that these victories of the sea are just as stimulating, in a different way, to animals as the victories of the land. American geologists are tracing, in a very instructive way, the effect on that early population of the encroachment of the sea. In each arm of the sea is a distinctive fauna. Life is still very parochial; the great cosmopolitans, the fishes, have not yet arrived. As the land is revelled, the arms of the sea approach each other, and at last mingle their waters and their populations, with stimulating effect. Provincial characters are modified, and cosmopolitan characters increase in the great central sea of America. The vast shallow waters provide a greatly enlarged theatre for the life of the time, and it flourishes enormously. Then, at the end of the Ordovician, the land begins to rise once more. Whether it was due to a fresh shrinking of the crust, or to the simple process we have described, or both, we need not attempt to determine; but both in Europe and America there is a great emergence of land. The shore-tracts and the shallow water are narrowed, the struggle is intensified in them, and we pass into the Silurian age with a greatly reduced number but more advanced variety of animals. In the Silurian age the sea advances once more, and the shore-waters expand. There is another great "expansive evolution" of life. But the Silurian age closes with a fresh and very extensive emergence of the land, and this time it will have the most important consequences. For two new things have meantime appeared on the earth. The fish has evolved in the waters, and the plant, at least, has found a footing on the land.
These geological changes which we have summarised and which have been too little noticed until recently in evolutionary studies, occupied 7,000,000 years, on the lowest estimate, and probably twice that period. The impatient critic of evolutionary hypotheses is apt to forget the length of these early periods. We shall see that in the last two or three million years of the earth's story most extraordinary progress has been made in plant and animal development, and can be very fairly traced. How much advance should we allow for these seven or fourteen million years of swarming life and changing environments?
We cannot nearly cover the whole ground of paleontology for the period, and must be content to notice some of the more interesting advances, and then deal more fully with the evolution of the fish, the forerunner of the great land animals.
The Trilobite was the most arresting figure in the Cambrian sea, and its fortunes deserve a paragraph. It reaches its climax in the Ordovician sea, and then begins to decline, as more powerful animals come upon the scene. At first (apparently) an eyeless organism, it gradually develops compound eyes, and in some species the experts have calculated that there were 15,000 facets to each eye. As time goes on, also, the eye stands out from the head on a kind of stalk, giving a wider range of vision. Some of the more sluggish species seem to have been able to roll themselves up, like hedgehogs, in their shells, when an enemy approached. But another branch of the same group (Crustacea) has meantime advanced, and it gradually supersedes the dwindling Trilobites. Toward the close of the Silurian great scorpion-like Crustaceans (Pterygotus, Eurypterus, etc.) make their appearance. Their development is obscure, but it must be remembered that the rocks only give the record of shore-life, and only a part of that is as yet opened by geology. Some experts think that they were developed in inland waters. Reaching sometimes a length of five or six feet, with two large compound eyes and some smaller eye-spots (ocelli), they must have been the giants of the Silurian ocean until the great sharks and other fishes appeared.
The quaint stalked Echinoderm which also we noticed in the Cambrian shallows has now evolved into a more handsome creature, the sea-lily. The cup-shaped body is now composed of a large number of limy plates, clothed with flesh; the arms are long, tapering, symmetrical, and richly fringed; the stalk advances higher and higher, until the flower-like animal sometimes waves its feathery arms from the top of a flexible pedestal composed of millions of tiny chalk disks. Small forests of these sea-lilies adorn the floor of the Silurian ocean, and their broken and dead frames form whole beds of limestone. The primitive Cystids dwindle and die out in the presence of such powerful competitors. Of 250 species only a dozen linger in the Silurian strata, though a new and more advanced type—the Blastoid—holds the field for a time. It is the age of the Crinoids or sea-lilies. The starfish, which has abandoned the stalk, does not seem to prosper as yet, and the brittle-star appears. Their age will come later. No sea-urchins or sea-cucumbers (which would hardly be preserved) are found as yet. It is precisely the order of appearance which our theory of their evolution demands.
The Brachiopods have passed into entirely new and more advanced species in the many advances and retreats of the shores, but the Molluscs show more interesting progress. The commanding group from the start is that of the Molluscs which have "kept their head," the Cephalopods, and their large shells show a most instructive evolution. The first great representative of the tribe is a straight-shelled Cephalopod, which becomes "the tyrant and scavenger of the Silurian ocean" (Chamberlin). Its tapering, conical shell sometimes runs to a length of fifteen feet, and a diameter of one foot. It would of itself be an important evolutionary factor in the primitive seas, and might explain more than one advance in protective armour or retreat into heavy shells. As the period advances the shell begins to curve, and at last it forms a close spiral coil. This would be so great an advantage that we are not surprised to find the coiled type (Goniatites) gain upon and gradually replace the straight-shelled types (Orthoceratites). The Silurian ocean swarms with these great shelled Cephalopods, of which the little Nautilus is now the only survivor.
We will not enlarge on the Sponges and Corals, which are slowly advancing toward the higher modern types. Two new and very powerful organisms have appeared, and merit the closest attention. One is the fish, the remote ancestor of the birds and mammals that will one day rule the earth. The other may be the ancestor of the fish itself, or it may be one of the many abortive outcomes and unsuccessful experiments of the stirring life of the time. And while these new types are themselves a result of the great and stimulating changes which we have reviewed and the incessant struggle for food and safety, they in turn enormously quicken the pace of development. The Dreadnought appears in the primitive seas; the effect on the fleets of the world of the evolution of our latest type of battleship gives us a faint idea of the effect, on all the moving population, of the coming of these monsters of the deep. The age had not lacked incentives to progress; it now obtains a more terrible and far-reaching stimulus.
To understand the situation let us see how the battle of land and sea had proceeded. The Devonian Period had opened with a fresh emergence of the land, especially in Europe, and great inland seas or lakes were left in the hollows. The tincture of iron which gives a red colour to our characteristic Devonian rocks, the Old Red Sandstone, shows us that the sand was deposited in inland waters. The fish had already been developed, and the Devonian rocks show it swarming, in great numbers and variety, in the enclosed seas and round the fringe of the continents.
The first generation was a group of strange creatures, half fish and half Crustacean, which are known as the Ostracoderms. They had large armour-plated heads, which recall the Trilobite, and suggest that they too burrowed in the mud of the sea or (as many think) of the inland lakes, making havoc among the shell-fish, worms, and small Crustacea. The hind-part of their bodies was remarkably fish-like in structure. But they had no backbone—though we cannot say whether they may not have had a rod of cartilage along the back—and no articulated jaws like the fish. Some regard them as a connecting link between the Crustacea and the fishes, but the general feeling is that they were an abortive development in the direction of the fish. The sharks and other large fishes, which have appeared in the Silurian, easily displace these clumsy and poor-mouthed competitors One almost thinks of the aeroplane superseding the navigable balloon.
Of the fishes the Arthrodirans dominated the inland seas (apparently), while the sharks commanded the ocean. One of the Arthrodirans, the Dinichthys ("terrible fish"), is the most formidable fish known to science. It measured twenty feet from snout to tail. Its monstrous head, three feet in width, was heavily armoured, and, instead of teeth, its great jaws, two feet in length, were sharpened, and closed over the victim like a gigantic pair of clippers. The strongly plated heads of these fishes were commonly a foot or two feet in width. Life in the waters became more exacting than ever. But the Arthrodirans were unwieldy and sluggish, and had to give way before more progressive types. The toothed shark gradually became the lord of the waters.