The plant world, we saw, starts, like the animal world, with a great kingdom of one-celled microscopic representatives, and the same principles of development, to a great extent, shape it into a large variety of forms. Armour-plating has a widespread influence among them. The graceful Diatom is a morsel of plasm enclosed in a flinty box, often with a very pretty arrangement of the pores and markings. The Desmid has a coat of cellulose, and a less graceful coat of cellulose encloses the Peridinean. Many of these minute plants develop locomotion and a degree of sensitiveness (Diatoms, Peridinea, Euglena, etc.). Some (Bacteria) adopt animal diet, and rise in power of movement and sensitiveness until it is impossible to make any satisfactory distinction between them and animals. Then the social principle enters. First we have loose associations of one-celled plants in a common bed, then closer clusters or many-celled bodies. In some cases (Volvox) the cluster, or the compound plant, is round and moves briskly in the water, closely resembling an animal. In most cases, the cells are connected in chains, and we begin to see the vague outline of the larger plant.
When we had reached this stage in the development of animal life, we found great difficulty in imagining how the chief lines of the higher Invertebrates took their rise from the Archaean chaos of early many-celled forms. We have an even greater difficulty here, as plant remains are not preserved at all until the Devonian period. We can only conclude, from the later facts, that these primitive many-celled plants branched out in several different directions. One section (at a quite unknown date) adopted an organic diet, and became the Fungi; and a later co-operation, or life-partnership, between a Fungus and a one-celled Alga led to the Lichens. Others remained at the Alga-level, and grew in great thickets along the sea bottoms, no doubt rivalling or surpassing the giant sea-weeds, sometimes 400 feet long, off the American coast to-day. Other lines which start from the level of the primitive many-celled Algae develop into the Mosses (Bryophyta), Ferns (Pteridophyta), Horsetails (Equisetalia), and Club-mosses (Lycopodiales). The mosses, the lowest group, are not preserved in the rocks; from the other three classes will come the great forests of the Carboniferous period.
The early record of plant-life is so poor that it is useless to speculate when the plant first left the water. We have somewhat obscure and disputed traces of ferns in the Ordovician, and, as they and the Horsetails and Club-mosses are well developed in the Devonian, we may assume that some of the sea-weeds had become adapted to life on land, and evolved into the early forms of the ferns, at least in the Cambrian period. From that time they begin to weave a mantle of sombre green over the exposed land, and to play a most important part in the economy of nature.
We saw that at the beginning of the Devonian there was a considerable rise of the land both in America and Europe, but especially in Europe. A distant spectator at that time would have observed the rise of a chain of mountains in Scotland and a general emergence of land north-western Europe. A continent stretched from Ireland to Scandinavia and North Russia, while most of the rest of Europe, except large areas of Russia, France, Germany, and Turkey, was under the sea. Where we now find our Alps and Pyrenees towering up to the snow-line there were then level stretches of ocean. Even the north-western continent was scooped into great inland seas or lagoons, which stretched from Ireland to Scandinavia, and, as we saw, fostered the development of the fishes.
As the Devonian period progressed the sea gained on the land, and must have restricted the growth of vegetation, but as the lake deposits now preserve the remains of the plants which grow down to their shores, or are washed into them, we are enabled to restore the complexion of the landscape. Ferns, generally of a primitive and generalised character, abound, and include the ferns such as we find in warm countries to-day. Horsetails and Club-mosses already grow into forest-trees. There are even seed-bearing ferns, which give promise of the higher plants to come, but as yet nothing approaching our flower and fruit-bearing trees has appeared. There is as yet no certain indication of the presence of Conifers. It is a sombre and monotonous vegetation, unlike any to be found in any climate to-day.
We will look more closely into its nature presently. First let us see how these primitive types of plants come to form the immense forests which are recorded in our coal-beds. Dr. Russel Wallace has lately represented these forests, which have, we shall see, had a most important influence on the development of life, as somewhat mysterious in their origin. If, however, we again consult the geologist as to the changes which were taking place in the distribution of land and water, we find a quite natural explanation. Indeed, there are now distinguished geologists (e.g. Professor Chamberlin) who doubt if the Coal-forests were so exceptionally luxuriant as is generally believed. They think that the vegetation may not have been more dense than in some other ages, but that there may have been exceptionally good conditions for preserving the dead trees. We shall see that there were; but, on the whole, it seems probable that during some hundreds of thousands of years remarkably dense forests covered enormous stretches of the earth's surface, from the Arctic to the Antarctic.
The Devonian period had opened with a rise of the land, but the sea eat steadily into it once more, and, with some inconsiderable oscillations of the land, regained its territory. The latter part of the Devonian and earlier part of the Carboniferous were remarkable for their great expanses of shallow water and low-lying land. Except the recent chain of hills in Scotland we know of no mountains. Professor Chamberlin calculates that 20,000,000, or 30,000,000 square miles of the present continental surface of Europe and America were covered with a shallow sea. In the deeper and clearer of these waters the earliest Carboniferous rocks, of limestone, were deposited. The "millstone grit," which succeeds the "limestone," indicates shallower water, which is being rapidly filled up with the debris of the land. In a word, all the indications suggest the early and middle Carboniferous as an age of vast swamps, of enormous stretches of land just above or below the sea-level, and changing repeatedly from one to the other. Further, the climate was at the time—we will consider the general question of climate later—moist and warm all over the earth, on account of the great proportion of sea-surface and the absence of high land (not to speak of more disputable causes).
These were ideal conditions for the primitive vegetation, and it spread over the swamps with great vigour. To say that the Coal-forests were masses of Ferns, Horsetails, and Club-mosses is a lifeless and misleading expression. The Club-mosses, or Lycopodiales, were massive trees, rising sometimes to a height of 120 feet, and probably averaging about fifty feet in height and one or two feet in diameter. The largest and most abundant of them, the Sigillaria, sent up a scarred and fluted trunk to a height of seventy or a hundred feet, without a branch, and was crowned with a bunch of its long, tapering leaves. The Lepidodendron, its fellow monarch of the forest, branched at the summit, and terminated in clusters of its stiff, needle-like leaves, six' or seven inches long, like enormous exaggerations of the little cones at the ends of our Club-mosses to-day. The Horsetails, which linger in their dwarfed descendants by our streams to-day, and at their exceptional best (in a part of South America) form slender stems about thirty feet high, were then forest-trees, four to six feet in circumference and sometimes ninety feet in height. These Calamites probably rose in dense thickets from the borders of the lakes, their stumpy leaves spreading in whorls at every joint in their hollow stems. Another extinct tree, the Cordaites, rivalled the Horsetails and Club-mosses in height, and its showers of long and extraordinary leaves, six feet long and six inches in width, pointed to the higher plant world that was to come. Between these gaunt towering trunks the graceful tree-ferns spread their canopies at heights of twenty, forty, and even sixty feet from the ground, and at the base was a dense undergrowth of ferns and fern-like seed-plants. Mosses may have carpeted the moist ground, but nothing in the nature of grass or flowers had yet appeared.
Imagine this dense assemblage of dull, flowerless trees pervaded by a hot, dank atmosphere, with no change of seasons, with no movement but the flying of large and primitive insects among the trees and the stirring of the ferns below by some passing giant salamander, with no song of bird and no single streak of white or red or blue drawn across the changeless sombre green, and you have some idea of the character of the forests that are compressed into our seams of coal. Imagine these forests spread from Spitzbergen to Australia and even, according to the south polar expeditions, to the Antarctic, and from the United States to Europe, to Siberia, and to China, and prolonged during some hundreds of thousands of years, and you begin to realise that the Carboniferous period prepared the land for the coming dynasties of animals. Let some vast and terrible devastation fall upon this luxuriant world, entombing the great multitude of its imperfect forms and selecting the higher types for freer life, and the earth will pass into a new age.
But before we describe the animal inhabitants of these forests, the part that the forests play in the story of life, and the great cataclysm which selects the higher types from the myriads of forms which the warm womb of the earth has poured out, we must at least glance at the evolutionary position of the Carboniferous plants themselves. Do they point downward to lower forms, and upward to higher forms, as the theory of evolution requires? A close inquiry into this would lead us deep into the problems of the modern botanist, but we may borrow from him a few of the results of the great labour he has expended on the subject within the last decade.