The reader will begin to think that we have sufficiently "explained" the Permian revolution. Far from it. Some of its problems are as yet insoluble. We have given no explanation at all why the ice-sheets, which we would in a general way be prepared to expect, appear in India and Australia, instead of farther north and south. Professor Chamberlin, in a profound study of the period (appendix to vol. ii, "Geology"), suggests that the new land from New Zealand to Antarctica may have diverted the currents (sea and air) up the Indian Ocean, and caused a low atmospheric pressure, much precipitation of moisture, and perpetual canopies of clouds to shield the ice from the sun. Since the outer polar regions themselves had been semi-tropical up to that time, it is very difficult to see how this will account for a freezing temperature in such latitudes as Australia and India. There does not seem to have been any ice at the Poles up to that time, or for ages afterwards, so that currents from the polar regions would be very different from what they are today. If, on the other hand, we may suppose that the rise of "Gondwana Land" (from Brazil to India) was attended by the formation of high mountains in those latitudes, we have the basis, at least, of a more plausible explanation. Professor Chamberlin rejects this supposition on the ground that the traces of ice-action are at or near the sea-level, since we find with them beds containing marine fossils. But this only shows, at the most, that the terminations of the glaciers reached the sea. We know nothing of the height of the land from which they started.
For our main purpose, however, it is fortunately not necessary to clear up these mysteries. It is enough for us that the Carboniferous land rises high above the surface of the ocean over the earth generally. The shallow seas are drained off its surface; its swamps and lagoons generally disappear; its waters run in falling rivers to the ocean. The dense, moist, warm atmosphere that had so long enveloped it is changed into a thinner mantle of gas, through which, night by night, the sun-soaked ground can discharge its heat into space. Cold winds blow over it from the new mountains; probably vast regions of it are swept by icy blasts from the glaciated lands. As these conditions advance in the Permian period, the forests wither and shrink. Of the extraordinarily mixed vegetation which we found in the Coal-forests some few types are fitted to meet the severe conditions. The seed-bearing trees, the thin, needle-leafed trees, the trees with stronger texture of the wood, are slowly singled out by the deepening cold. The golden age of Cryptogams is over. The age of the Cycad and the Conifers is opening. Survivors of the old order linger in the warmer valleys, as one may see to-day tree-ferns lingering in nooks of southern regions while an Antarctic wind is whistling on the hills above them; but over the broad earth the luscious pasturage of the Coal-forest has changed into what is comparatively a cold desert. We must not, of course, imagine too abrupt a change. The earth had been by no means all swamp in the Carboniferous age. The new types were even then developing in the cooler and drier localities. But their hour has come, and there is great devastation among the lower plant population of the earth.
It follows at once that there would be, on land, an equal devastation and a similar selection in the animal world. The vegetarians suffered an appalling reduction of their food; the carnivores would dwindle in the same proportion. Both types, again, would suffer from the enormous changes in their physical surroundings. Vast stretches of marsh, with teeming populations, were drained, and turned into firm, arid plains or bleak hill-sides. The area of the Amphibia, for instance, was no less reduced than their food. The cold, in turn, would exercise a most formidable selection. Before the Permian period there was not on the whole earth an animal with a warm-blooded (four-chambered) heart or a warm coat of fur or feathers; nor was there a single animal that gave any further care to the eggs it discharged, and left to the natural warmth of the earth to develop. The extermination of species in the egg alone must have been enormous.
It is impossible to convey any just impression of the carnage which this Permian revolution wrought among the population of the earth. We can but estimate how many species of animals and plants were exterminated, and the reader must dimly imagine the myriads of living things that are comprised in each species. An earlier American geologist, Professor Le Conte, said that not a single Carboniferous species crossed the line of the Permian revolution. This has proved to be an exaggeration, but Professor Chamberlin seems to fall into an exaggeration on the other side when he says that 300 out of 10,000 species survived. There are only about 300 species of animals and plants known in the whole of the Permian rocks (Geikie), and most of these are new. For instance, of the enormous plant-population of the Coal-forests, comprising many thousands of species, only fifty species survived unchanged in the Permian. We may say that, as far as our knowledge goes, of every thirty species of animals and plants in the Carboniferous period, twenty-eight were blotted out of the calendar of life for ever; one survived by undergoing such modifications that it became a new species, and one was found fit to endure the new conditions for a time. We must leave it to the imagination to appreciate the total devastation of individuals entailed in this appalling application of what we call natural selection.
But what higher types of life issued from the womb of nature after so long and painful a travail? The annihilation of the unfit is the seamy side, though the most real side, of natural selection. We ignore it, or extenuate it, and turn rather to consider the advances in organisation by which the survivors were enabled to outlive the great chill and impoverishment.
Unfortunately, if the Permian period is an age of death, it is not an age of burials. The fossil population of its cemeteries is very scanty. Not only is the living population enormously reduced, but the areas that were accustomed to entomb and preserve organisms—the lake and shore deposits—are also greatly reduced. The frames of animals and plants now rot on the dry ground on which they live. Even in the seas, where life must have been much reduced by the general disturbance of conditions, the record is poor. Molluscs and Brachiopods and small fishes fill the list, but are of little instructiveness for us, except that they show a general advance of species. Among the Cephalopods, it is true, we find a notable arrival. On the one hand, a single small straight-shelled Cephalopod lingers for a time with the ancestral form; on the other hand, a new and formidable competitor appears among the coiled-shell Cephalopods. It is the first appearance of the famous Ammonite, but we may defer the description of it until we come to the great age of Ammonites.
Of the insects and their fortunes in the great famine we have no direct knowledge; no insect remains have yet been found in Permian rocks. We shall, however, find them much advanced in the next period, and must conclude that the selection acted very effectively among their thousand Carboniferous species.
The most interesting outcome of the new conditions is the rise and spread of the reptiles. No other sign of the times indicates so clearly the dawn of a new era as the appearance of these primitive, clumsy reptiles, which now begin to oust the Amphibia. The long reign of aquatic life is over; the ensign of progress passes to the land animals. The half-terrestrial, half-aquatic Amphibian deserts the water entirely (in one or more of its branches), and a new and fateful dynasty is founded. Although many of the reptiles will return to the water, when the land sinks once more, the type of the terrestrial quadruped is now fully evolved, and from its early reptilian form will emerge the lords of the air and the lords of the land, the birds and the mammals.
To the uninformed it may seem that no very great advance is made when the reptile is evolved from the Amphibian. In reality the change implies a profound modification of the frame and life of the vertebrate. Partly, we may suppose, on account of the purification of the air, partly on account of the decrease in water surface, the gills are now entirely discarded. The young reptile loses them during its embryonic life—as man and all the mammals and birds do to-day—and issues from the egg a purely lung-breathing creature. A richer blood now courses through the arteries, nourishing the brain and nerves as well as the muscles. The superfluous tissue of the gill-structures is used in the improvement of the ear and mouth-parts; a process that had begun in the Amphibian. The body is raised up higher from the ground, on firmer limbs; the ribs and the shoulder and pelvic bones—the saddles by which the weight of the body is adjusted between the limbs and the backbone—are strengthened and improved. Finally, two important organs for the protection and nurture of the embryo (the amnion and the allantois) make their appearance for the first time in the reptile. In grade of organisation the reptile is really nearer to the bird than it is to the salamander.
Yet these Permian reptiles are so generalised in character and so primitive in structure that they point back unmistakably to an Amphibian ancestry. The actual line of descent is obscure. When the reptiles first appear in the rocks, they are already divided into widely different groups, and must have been evolved some time before. Probably they started from some group or groups of the Amphibia in the later Carboniferous, when, as we saw, the land began to rise considerably. We have not yet recovered, and may never recover, the region where the early forms lived, and therefore cannot trace the development in detail. The fossil archives, we cannot repeat too often, are not a continuous, but a fragmentary, record of the story of life. The task of the evolutionist may be compared to the work of tracing the footsteps of a straying animal across the country. Here and there its traces will be amply registered on patches of softer ground, but for the most part they will be entirely lost on the firmer ground. So it is with the fossil record of life. Only in certain special conditions are the passing forms buried and preserved. In this case we can say only that the Permian reptiles fall into two great groups, and that one of these shows affinities to the small salamander-like Amphibia of the Coal-forest (the Microsaurs), while the other has affinities to the Labyrinthodonts.