It is also useful to note that the fact that there have been great changes in the climate of the earth in past time is beyond dispute. There is no denying the fact that the climate of the earth was warm from the Arctic to the Antarctic in the Devonian and Carboniferous periods: that it fell considerably in the Permian: that it again became at least "warm temperate" (Chamberlin) from the Arctic to the Antarctic in the Jurassic, and again in the Eocene: that some millions of square miles of Europe and North America were covered with ice and snow in the Pleistocene, so that the reindeer wandered where palms had previously flourished and the vine flourishes to-day; and that the pronounced zones of climate which we find today have no counterpart in any earlier age. In view of these great and admitted fluctuations of the earth's temperature one does not see any reason for hesitating to admit a fall of temperature in the Cretaceous, if the facts point to it.

On the other hand, the alternative suggestions are not very convincing. We have noticed one of these suggestions in connection with the origin of the Angiosperms. It hints that this may be related to developments of the insect world. Most probably the development of the characteristic flowers of the Angiosperms is connected with an increasing relation to insects, but what we want to understand especially is the deciduous character of their leaves. Many of the Angiosperms are evergreen, so that it cannot be said that the one change entailed the other. In fact, a careful study of the leaves preserved in the rocks seems to show the deciduous Angiosperms gaining on the evergreens at the end of the Cretaceous. The most natural, it not the only, interpretation of this is that the temperature is falling. Deciduous trees shed their leaves so as to check their transpiration when a season comes on in which they cannot absorb the normal amount of moisture. This may occur either at the on-coming of a hot, dry season or of a cold season (in which the roots absorb less). Everything suggests that the deciduous tree evolved to meet an increase of cold, not of heat.

Another suggestion is that animals and plants were not "climatically differentiated" until the Cretaceous period; that is to say, that they were adapted to all climates before that time, and then began to be sensitive to differences of climate, and live in different latitudes. But how and why they should suddenly become differentiated in this way is so mysterious that one prefers to think that, as the animal remains also suggest, there were no appreciable zones of climate until the Cretaceous. The magnolia, for instance, flourished in Greenland in the early Tertiary, and has to live very far south of it to-day. It is much simpler to assume that Greenland changed—as a vast amount of evidence indicates—than that the magnolia changed.

Finally, to explain the disappearance of the Mesozoic reptiles without a fall in temperature, it is suggested that they were exterminated by the advancing mammals. It is assumed that the spreading world of the Angiospermous plants somewhere met the spread of the advancing mammals, and opened out a rich new granary to them. This led to so powerful a development of the mammals that they succeeded in overthrowing the reptiles.

There are several serious difficulties in the way of this theory. The first and most decisive is that the great reptiles have practically disappeared before the mammals come on the scene. Only in one series of beds (Puerco) in America, representing an early period of the Tertiary Era, do we find any association of their remains; and even there it is not clear that they were contemporary. Over the earth generally the geological record shows the great reptiles dying from some invisible scourge long before any mammal capable of doing them any harm appears; even if we suppose that the mammal mainly attacked the eggs and the young. We may very well believe that more powerful mammals than the primitive Mesozoic specimens were already developed in some part of the earth—say, Africa—and that the rise of the land gave them a bridge across the Mediterranean to Europe. Probably this happened; but the important point is that the reptiles were already almost extinct. The difficulty is even greater when we reflect that it is precisely the most powerful reptiles (Deinosaurs) and least accessible reptiles (Pterosaurs, Ichthyosaurs, etc.) which disappear, while the smaller land and water reptiles survive and retreat southward—where the mammals are just as numerous. That assuredly is not the effect of an invasion of carnivores, even if we could overlook the absence of such carnivores from the record until after the extinction of the reptiles in most places.

I have entered somewhat fully into this point, partly because of its great interest, but partly lest it be thought that I am merely reproducing a tradition of geological literature without giving due attention to the criticisms of recent writers. The plain and common interpretation of the Cretaceous revolution—that a fall in temperature was its chief devastating agency—is the only one that brings harmony into all the facts. The one comprehensive enemy of that vast reptile population was cold. It was fatal to the adult because he had a three-chambered heart and no warm coat; it was fatal to the Mesozoic vegetation on which, directly or indirectly, he fed; it was fatal to his eggs and young because the mother did not brood over the one or care for the other. It was fatal to the Pterosaurs, even if they were warm-blooded, because they had no warm coats and did not (presumably) hatch their eggs; and it was equally fatal to the viviparous Ichthyosaurs. It is the one common fate that could slay all classes. When we find that the surviving reptiles retreat southward, only lingering in Europe during the renewed warmth of the Eocene and Miocene periods, this interpretation is sufficiently confirmed. And when we recollect that these things coincide with the extinction of the Ammonites and Belemnites, and the driving of their descendants further south, as well as the rise and triumph of deciduous trees, it is difficult to see any ground for hesitating.

But we need not, and must not, imagine a period of cold as severe, prolonged, and general as that of the Permian period. The warmth of the Jurassic period is generally attributed to the low relief of the land, and the very large proportion of water-surface. The effect of this would be to increase the moisture in the atmosphere. Whether this was assisted by any abnormal proportion of carbon-dioxide, as in the Carboniferous, we cannot confidently say. Professor Chamberlin observes that, since the absorbing rock-surface was greatly reduced in the Jurassic, the carbon-dioxide would tend to accumulate in its atmosphere, and help to explain the high temperature. But the great spread of vegetation and the rise of land in the later Jurassic and the Cretaceous would reduce this density of the atmosphere, and help to lower the temperature.

It is clear that the cold would at first be local. In fact, it must be carefully realised that, when we speak of the Jurassic period as a time of uniform warmth, we mean uniform at the same altitude. Everybody knows the effect of rising from the warm, moist sea-level to the top of even a small inland elevation. There would be such cooler regions throughout the Jurassic, and we saw that there were considerable upheavals of land towards its close. To these elevated lands we may look for the development of the Angiosperms, the birds, and the mammals. When the more massive rise of land came at the end of the Cretaceous, the temperature would fall over larger areas, and connecting ridges would be established between one area and another. The Mesozoic plants and animals would succumb to this advancing cold. What precise degree of cold was necessary to kill the reptiles and Cephalopods, yet allow certain of the more delicate flowering plants to live, is yet to be determined. The vast majority of the new plants, with their winter sleep, would thrive in the cooler air, and, occupying the ground of the retreating cycads and ginkgoes would prepare a rich harvest for the coming birds and mammals.

[ [!-- H2 anchor --] ]

CHAPTER XV. THE TERTIARY ERA