But the golden age closes, as all golden ages had done before it, and for the same reason. The land begins to rise, and cast the warm shallow seas from its face. The expansion of life has been more rapid and remarkable than it had ever been before, in corresponding periods of abundant food and easy conditions; the contraction comes more quickly than it had ever done before. Mountain masses begin to rise in nearly all parts of the world. The advance is slow and not continuous, but as time goes on the Atlas, Alps, Pyrenees, Apennines, Caucasus, Himalaya, Rocky Mountains, and Andes rise higher and higher. When the geologist looks to-day for the floor of the Eocene ocean, which he recognises by the shells of the Nummulites, he finds it 10,000 feet above the sea-level in the Alps, 16,000 feet above the sea-level in the Himalaya, and 20,000 feet above the sea-level in Thibet. One need not ask why the regions of London and Paris fostered palms and magnolias and turtles in Tertiary times, and shudder in their dreary winter to-day.

The Tertiary Era is divided by geologists into four periods: the Eocene, Oligocene, Miocene, and Pliocene. "Cene" is our barbaric way of expressing the Greek word for "new," and the classification is meant to mark the increase of new (or modern and actual) types of life in the course of the Tertiary Era. Many geologists, however, distrust the classification, and are disposed to divide the Tertiary into two periods. From our point of view, at least, it is advisable to do this. The first and longer half of the Tertiary is the period in which the temperature rises until Central Europe enjoys the climate of South Africa; the second half is the period in which the land gradually rises, and the temperature falls, until glaciers and sheets of ice cover regions where the palm and fig had flourished.

The rise of the land had begun in the first half of the Tertiary, but had been suspended. The Pyrenees and Apennines had begun to rise at the end of the Eocene, straining the crust until it spluttered with volcanoes, casting the nummulitic sea off large areas of Southern Europe. The Nummulites become smaller and less abundant. There is also some upheaval in North America, and a bridge of land begins to connect the north and south, and permit an effective mingling of their populations. But the advance is, as I said, suspended, and the Oligocene period maintains the golden age. With the Miocene period the land resumes its rise. A chill is felt along the American coast, showing a fall in the temperature of the Atlantic. In Europe there is a similar chill, and a more obvious reason for it. There is an ascending movement of the whole series of mountains from Morocco and the Pyrenees, through the Alps, the Caucasus, and the Carpathians, to India and China. Large lakes still lie over Western Europe, but nearly the whole of it emerges from the ocean. The Mediterranean still sends an arm up France, and with another arm encircles the Alpine mass; but the upheaval continues, and the great nummulitic sea is reduced to a series of extensive lakes, cut off both from the Atlantic and Pacific. The climate of Southern Europe is probably still as genial as that of the Canaries to-day. Palms still linger in the landscape in reduced numbers.

The last part of the Tertiary, the Pliocene, opens with a slight return of the sea. The upheaval is once more suspended, and the waters are eating into the land. There is some foundering of land at the south-western tip of Europe; the "Straits of Gibraltar" begin to connect the Mediterranean with the Atlantic, and the Balearic Islands, Corsica, and Sardinia remain as the mountain summits of a submerged land. Then the upheaval is resumed, in nearly every part of the earth.

Nearly every great mountain chain that the geologist has studied shared in this remarkable movement at the end of the Tertiary Era. The Pyrenees, Alps, Himalaya, etc., made their last ascent, and attained their present elevation. And as the land rose, the aspect of Europe and America slowly altered. The palms, figs, bamboos, and magnolias disappeared; the turtles, crocodiles, flamingoes, and hippopotamuses retreated toward the equator. The snow began to gather thick on the rising heights; then the glaciers began to glitter on their flanks. As the cold increased, the rivers of ice which flowed down the hills of Switzerland, Spain, Scotland, or Scandinavia advanced farther and farther over the plains. The regions of green vegetation shrank before the oncoming ice, the animals retreated south, or developed Arctic features. Europe and America were ushering in the great Ice-Age, which was to bury five or six million square miles of their territory under a thick mantle of ice.

Such is the general outline of the story of the Tertiary Era. We approach the study of its types of life and their remarkable development more intelligently when we have first given careful attention to this extraordinary series of physical changes. Short as the Era is, compared with its predecessors, it is even more eventful and stimulating than they, and closes with what Professor Chamberlin calls "the greatest deformative movements in post-Cambrian history." In the main it has, from the evolutionary point of view, the same significant character as the two preceding eras. Its middle portion is an age of expansion, indulgence, exuberance, in which myriads of varied forms are thrown upon the scene, its later part is an age of contraction, of annihilation, of drastic test, in which the more effectively organised will be chosen from the myriads of types. Once more nature has engendered a vast brood, and is about to select some of her offspring to people the modern world. Among the types selected will be Man.

[ [!-- H2 anchor --] ]

CHAPTER XVI. THE FLOWER AND THE INSECT

AS we approach the last part of the geological record we must neglect the lower types of life, which have hitherto occupied so much of our attention, so that we may inquire more fully into the origin and fortunes of the higher forms which now fill the stage. It may be noted, in general terms, that they shared the opulence of the mid-Tertiary period, produced some gigantic specimens of their respective families, and evolved into the genera, and often the species, which we find living to-day. A few illustrations will suffice to give some idea of the later development of the lower invertebrates and vertebrates.

Monstrous oysters bear witness to the prosperity of that ancient and interesting family of the Molluscs. In some species the shells were commonly ten inches long; the double shell of one of these Tertiary bivalves has been found which measured thirteen inches in length, eight in width, and six in thickness. In the higher branch of the Mollusc world the naked Cephalopods (cuttle-fish, etc.) predominate over the nautiloids—the shrunken survivors of the great coiled-shell race. Among the sharks, the modern Squalodonts entirely displace the older types, and grow to an enormous size. Some of the teeth we find in Tertiary deposits are more than six inches long and six inches broad at the base. This is three times the size of the teeth of the largest living shark, and it is therefore believed that the extinct possessor of these formidable teeth (Carcharodon megalodon) must have been much more than fifty, and was possibly a hundred, feet in length. He flourished in the waters of both Europe and America during the halcyon days of the Tertiary Era. Among the bony fishes, all our modern and familiar types appear.