Again, it will be found that in the natural position of standing we are not perfectly flat-footed, but tend to press much more on the outer than on the inner edge of the foot. This tendency, surviving after ages of living on the level ground, is a lingering effect of the far-off arboreal days.
A more curious reminiscence is seen in the fact that the very young infant, flabby and powerless as it is in most of its muscles, is so strong in the muscles of the hand and arm that it can hang on to a stick by its hands, and sustain the whole weight of its body, for several minutes. Finally, our vestigial tail—for we have a tail comparable to that of the higher apes—must be mentioned. In embryonic development the tail is much longer than the legs, and some children are born with a real tail, which they move as the puppy does, according to their emotional condition. Other features of the body point back to an even earlier stage. The vermiform appendage—in which some recent medical writers have vainly endeavoured to find a utility—is the shrunken remainder of a large and normal intestine of a remote ancestor. This interpretation of it would stand even if it were found to have a certain use in the human body. Vestigial organs are sometimes pressed into a secondary use when their original function has been lost. The danger of this appendage in the human body to-day is due to the fact that it is a blind alley leading off the alimentary canal, and has a very narrow opening. In the ape the opening is larger, and, significantly enough, it is still larger in the human foetus. When we examine some of the lower mammals we discover the meaning of it. It is in them an additional storage chamber in the alimentary system. It is believed that a change to a more digestible diet has made this additional chamber superfluous in the Primates, and the system is slowly suppressing it.
Other reminiscences of this earlier phase are found in the many vestigial muscles which are found in the body to-day. The head of the quadruped hangs forward, and is held by powerful muscles and ligaments in the neck. We still have the shrunken remainder of this arrangement. Other vestigial muscles are found in the forehead, the scalp, the nose—many people can twitch the nostrils and the scalp—and under the skin in many parts of the body. These are enfeebled remnants of the muscular coat by which the quadruped twitches its skin, and drives insects away. A less obvious feature is found by the anatomist in certain blood-vessels of the trunk. As the blood flows vertically in a biped and horizontally in a quadruped, the arrangement of the valves in the blood-vessels should be different in the two cases; but it is the same in us as in the quadruped. Another trace of the quadruped ancestor is found in the baby. It walks "on all fours" so long, not merely from weakness of the limbs, but because it has the spine of a quadruped.
A much more interesting fact, but one less easy to interpret, is that the human male has, like the male ape, organs for suckling the young. That there are real milk-glands, usually vestigial, underneath the teats in the breast of the boy or the man is proved by the many known cases in which men have suckled the young. Several friends of the present writer have seen this done in India and Ceylon by male "wet-nurses." As there is no tribe of men or species of ape in which the male suckles the young normally, we seem to be thrown back once more upon an earlier ancestor. The difficulty is that we know of no mammal of which both parents suckle the young, and some authorities think that the breasts have been transferred to the male by a kind of embryonic muddle. That is difficult to believe, as no other feature has ever been similarly transferred to the opposite sex. In any case the male breasts are vestigial organs. Another peculiarity of the mammary system is that sometimes three, four, or five pairs of breasts appear in a woman (and several have been known even in a man). This is, apparently, an occasional reminiscence of an early mammal ancestor which had large litters of young and several pairs of breasts.
But there are features of the human body which recall an ancestor even earlier than the quadruped. The most conspicuous of these is the little fleshy pad at the inner corner of each eye. It is a common feature in mammals, and is always useless. When, however, we look lower down in the animal scale we find that fishes and reptiles (and birds) have a third eyelid, which is drawn across the eye from this corner. There is little room to doubt that the little fleshy vestige in the mammal's eye is the shrunken remainder of the lateral eyelid of a remote fish-ancestor.
A similar reminiscence is found in the pineal body, a small and useless object, about the size and shape of a hazel-nut, in the centre of the brain. When we examine the reptile we find a third eye in the top of the head. The skin has closed over it, but the skull is still, in many cases, perforated as it is for the eyes in front. I have seen it standing out like a ball on the head of a dead crocodile, and in the living tuatara—the very primitive New Zealand lizard—it still has a retina and optic nerve. As the only animal in nature to-day with an eye in this position (the Pyrosome, a little marine animal of the sea-squirt family) is not in the line of reptile and mammal ancestry, it is difficult to locate the third eye definitely. But when we find the skin closing over it in the amphibian and reptile, then the bone, and then see it gradually atrophying and being buried under the growing brain, we must refer it to some early fish-ancestor. This ancestor, we may recall, is also reflected for a time in the gill-slits and arches, with their corresponding fish-like heart and blood-vessels, during man's embryonic development, as we saw in a former chapter.
These are only a few of the more conspicuous instances of vestigial structures in man. Metchnikoff describes about a hundred of them. Even if there were no remains of primitive man pointing in the direction of a common ancestry with the ape, no lower types of men in existence with the same tendency, no apes found in nature to-day with a structure so strikingly similar to that of man, and no fossil records telling of the divergence of forms from primitive groups in past time, we should be forced to postulate the evolution of man in order to explain his actual features. The vestigial structures must be interpreted as we interpret the buttons on the back of a man's coat. They are useless reminiscences of an age in which they were useful. When their witness to the past is supported by so many converging lines of evidence it becomes irresistible. I will add only one further testimony which has been brought into court in recent years.
The blood consists of cells, or minute disk-shaped corpuscles, floating in a watery fluid, or serum. It was found a few years ago, in the course of certain experiments in mixing the blood of animals, that the serum of one animal's blood sometimes destroyed the cells of the other animal's blood, and at other times did not. When the experiments were multiplied, it was found that the amount of destructive action exercised by one specimen of blood upon another depended on the nearness or remoteness of relationship between the animals. If the two are closely related, there is no disturbance when their blood is mixed; when they are not closely related, the serum of one destroys the cells of the other, and the intensity of the action is in proportion to their remoteness from each other. Another and more elaborate form of the experiment was devised, and the law was confirmed. On both tests it was found by experiment that the blood of man and of the anthropoid ape behaved in such a way as to prove that they were closely related. The blood of the monkey showed a less close relationship—a little more remote in the New World than in the Old World monkeys; and the blood of the femur showed a faint and distant relationship.
The FACT of the evolution of man and the apes from a common ancestor is, therefore, outside the range of controversy in science; we are concerned only to retrace the stages of that evolution, and the agencies which controlled it. Here, unfortunately, the geological record gives us little aid. Tree-dwelling animals are amongst the least likely to be buried in deposits which may preserve their bones for ages. The distribution of femur and ape remains shows that the order of the Primates has been widespread and numerous since the middle of the Tertiary Era, yet singularly few remains of the various families have been preserved.
Hence the origin of the Primates is obscure. They are first foreshadowed in certain femur-like forms of the Eocene period, which are said in some cases (Adapis) to combine the characters of pachyderms and femurs, and in others (Anaptomorphus) to unite the features of Insectivores and femurs. Perhaps the more common opinion is that they were evolved from a branch of the Insectivores, but the evidence is too slender to justify an opinion. It was an age when the primitive placental mammals were just beginning to diverge from each other, and had still many features in common. For the present all we can say is that in the earliest spread of the patriarchal mammal race one branch adopted arboreal life, and evolved in the direction of the femurs and the apes. The generally arboreal character of the Primates justifies this conclusion.