Finally, and this is the more serious difficulty, it is said that we cannot in this way explain the localisation of the glacial sheets. Why should Europe and North America in particular suffer so markedly from a general thinning of the atmosphere? The simplest answer is to suggest that they especially shared the rise of the land. Geology is not in a position either to prove or disprove this, and it remains only a speculative interpretation of the fact We know at least that there was a great uprise of land in Europe and North America in the Pliocene and Pleistocene and may leave the precise determination of the point to a later age. At the same time other local causes are not excluded. There may have been a large extension of the area of atmospheric depression which we have in the region of Greenland to-day.
When we turn to the question of chronology we have the same acute difference of opinion as we have found in regard to all questions of geological time. It used to be urged, on astronomical grounds, that the Ice-Age began about 240,000 years ago, and ended about 60,000 years ago, but the astronomical theory is, as I said, generally abandoned. Geologists, on the other hand, find it difficult to give even approximate figures. Reviewing the various methods of calculation, Professor Chamberlin concludes that the time of the first spread of the ice-sheet is quite unknown, the second and greatest extension of the glaciation may have been between 300,000 and a million years ago, and the last ice-extension from 20,000 to 60,000 years ago; but he himself attaches "very little value" to the figures. The chief ice-age was some hundreds of thousands of years ago, that is all we can say with any confidence.
In dismissing the question of climate, however, we should note that a very serious problem remains unsolved. As far as present evidence goes we seem to be free to hold that the ice-ages which have at long intervals invaded the chronicle of the earth were due to rises of the land. Upheaval is the one constant and clearly recognisable feature associated with, or preceding, ice-ages. We saw this in the case of the Cambrian, Permian, Eocene, and Pleistocene periods of cold, and may add that there are traces of a rise of mountains before the glaciation of which we find traces in the middle of the Archaean Era. There are problems still to be solved in connection with each of these very important ages, but in the rise of the land and consequent thinning of the atmosphere we seem to have a general clue to their occurrence. Apart from these special periods of cold, however, we have seen that there has been, in recent geological times, a progressive cooling of the earth, which we have not explained. Winter seems now to be a permanent feature of the earth's life, and polar caps are another recent, and apparently permanent, acquisition. I find no plausible reason assigned for this.
The suggestion that the disk of the sun is appreciably smaller since Tertiary days is absurd; and the idea that the earth has only recently ceased to allow its internal heat to leak through the crust is hardly more plausible. The cause remains to be discovered.
We turn now to consider the effect of the great Ice-Age, and the relation of man to it. The Permian revolution, to which the Pleistocene Ice-Age comes nearest in importance, wrought such devastation that the overwhelming majority of living things perished. Do we find a similar destruction of life, and selection of higher types, after the Pleistocene perturbation? In particular, had it any appreciable effect upon the human species?
A full description of the effect of the great Ice-Age would occupy a volume. The modern landscape in Europe and North America was very largely carved and modelled by the ice-sheet and the floods that ensued upon its melting. Hills were rounded, valleys carved, lakes formed, gravels and soils distributed, as we find them to-day. In its vegetal aspect, also, as we saw, the modern landscape was determined by the Pleistocene revolution. A great scythe slowly passed over the land. When the ice and snow had ended, and the trees and flowers, crowded in the southern area, slowly spread once more over the virgin soil, it was only the temperate species that could pass the zone guarded by the Alps and the Pyrenees. On the Alps themselves the Pleistocene population still lingers, their successful adaptation to the cold now preventing them from descending to the plains.
The animal world in turn was winnowed by the Pleistocene episode. The hippopotamus, crocodile, turtle, flamingo, and other warm-loving animals were banished to the warm zone. The mammoth and the rhinoceros met the cold by developing woolly coats, but the disappearance of the ice, which had tempted them to this departure, seems to have ended their fitness. Other animals which became adapted to the cold—arctic bears, foxes, seals, etc.—have retreated north with the ice, as the sheet melted. For hundreds of thousands of years Europe and North America, with their alternating glacial and interglacial periods, witnessed extraordinary changes and minglings of their animal population. At one time the reindeer, the mammoth, and the glutton penetrate down to the Mediterranean, in the next phase the elephant and hippopotamus again advance nearly to Central Europe. It is impossible here to attempt to unravel these successive changes and migrations. Great numbers of species were destroyed, and at length, when the climatic condition of the earth reached a state of comparative stability, the surviving animals settled in the geographical regions in which we find them to-day.
The only question into which we may enter with any fullness is that of the relation of human development to this grave perturbation of the condition of the globe. The problem is sometimes wrongly conceived. The chief point to be determined is not whether man did or did not precede the Ice-Age. As it is the general belief that he was evolved in the Tertiary, it is clear that he existed in some part of the earth before the Ice-Age. Whether he had already penetrated as far north as Britain and Belgium is an interesting point, but not one of great importance. We may, therefore, refrain from discussing at any length those disputed crude stone implements (Eoliths) which, in the opinion of many, prove his presence in northern regions before the close of the Tertiary. We may also now disregard the remains of the Java Ape-Man. There are authorities, such as Deniker, who hold that even the latest research shows these remains to be Pliocene, but it is disputed. The Java race may be a surviving remnant of an earlier phase of human evolution.
The most interesting subject for inquiry is the fortune of our human and prehuman forerunners during the Pliocene and Pleistocene periods. It may seem that if we set aside the disputable evidence of the Eoliths and the Java remains we can say nothing whatever on this subject. In reality a fact of very great interest can be established. It can be shown that the progress made during this enormous lapse of time—at least a million years—was remarkably slow. Instead of supposing that some extraordinary evolution took place in that conveniently obscure past, to which we can find no parallel within known times, it is precisely the reverse. The advance that has taken place within the historical period is far greater, comparatively to the span of time, than that which took place in the past.
To make this interesting fact clearer we must attempt to measure the progress made in the Pliocene and Pleistocene. We may assume that the precursor of man had arrived at the anthropoid-ape level by the middle of the Miocene period. He is not at all likely to have been behind the anthropoid apes, and we saw that they were well developed in the mid-Tertiary. Now we have a good knowledge of man as he was in the later stage of the Ice-Age—at least a million years later—and may thus institute a useful comparison and form some idea of the advance made.