The phial which had stood immersed in quicksilver had lost very little of its original quantity of air; and being now opened in water, and left there, along with another phial, which was just then filled, as this had been three years before, viz. with air half inflammable and half fixed, I observed that the quantity of both was diminished, by the absorption of the water, in the same proportion.
Upon applying a candle to the mouths of the phials which had been kept three years, that which had stood in quicksilver went off at one explosion, exactly as it would have done if there had been a mixture of common air with the inflammable. As a good deal depends upon the apertures of the vessels in which the inflammable air is mixed, I mixed the two kinds of air in equal proportions in the same phial, and after letting the phial stand some days in water, that the fixed air might be absorbed, I applied a candle to it, but it made ten or twelve explosions (stopping the phial after each of them) before the inflammable matter was exhausted.
The air which had been confined in the corked phial exploded in the very same manner as an equal and fresh mixture of the two kinds of air in the same phial, the experiment being made as soon as the fixed air was absorbed, as before; so that in this case, the two kinds of air did not seem to have affected one another at all.
Considering inflammable air as air united to, or loaded with phlogiston, I exposed to it several substances, which are said to have a near affinity with phlogiston, as oil of vitriol, and spirit of nitre (the former for above a month), but without making any sensible alteration in it.
I observed, however, that inflammable air, mixed with the fumes of smoking spirit of nitre, goes off at one explosion, exactly like a mixture of half common and half inflammable air. This I tried several times, by throwing the inflammable air into a phial full of spirit of nitre, with its mouth immersed in a bason containing some of the same spirit, and then applying the flame of a candle to the mouth of the phial, the moment that it was uncovered, after it had been taken out of the bason.
This remarkable effect I hastily concluded to have arisen from the inflammable air having been in part deprived of its inflammability, by means of the stronger affinity, which the spirit of nitre had with phlogiston, and therefore I imagined that by letting them stand longer in contact, and especially by agitating them strongly together, I should deprive the air of all its inflammability; but neither of these operations succeeded, for still the air was only exploded at once, as before.
And lastly, when I passed a quantity of inflammable air, which had been mixed with the fumes of spirit of nitre, through a body of water, and received it in another vessel, it appeared not to have undergone any change at all, for it went off in several successive explosions, like the purest inflammable air. The effect above-mentioned must, therefore, have been owing to the fumes of the spirit of nitre supplying the place of common air for the purpose of ignition, which is analogous to other experiments with nitre.
Having had the curiosity, on the 25th of July 1772, to expose a great variety of different kinds of air to water out of which the air it contained had been boiled, without any particular view; the result was, in several respects, altogether unexpected, and led to a variety of new observations on the properties and affinities of several kinds of air with respect to water. Among the rest three fourths of that which was inflammable was absorbed by the water in about two days, and the remainder was inflammable, but weakly so.
Upon this, I began to agitate a quantity of strong inflammable air in a glass jar, standing in a pretty large trough of water, the surface of which was exposed to the common air, and I found that when I had continued the operation about ten minutes, near one fourth of the quantity of air had disappeared; and finding that the remainder made an effervescence with nitrous air, I concluded that it must have become fit for respiration, whereas this kind of air is, at the first, as noxious as any other kind whatever. To ascertain this, I put a mouse into a vessel containing 2-1/2 ounce measures of it, and observed that it lived in it twenty minutes, which is as long as a mouse will generally live in the same quantity of common air. This mouse was even taken out alive, and recovered very well. Still also the air in which it had breathed so long was inflammable, though very weakly so. I have even found it to be so when a mouse has actually died in it. Inflammable air thus diminished by agitation in water, makes but one explosion on the approach of a candle, exactly like a mixture of inflammable air with common air.
From this experiment I concluded that, by continuing the same process, I should deprive inflammable air of all its inflammability, and this I found to be the case; for, after a longer agitation, it admitted a candle to burn in it, like common air, only more faintly; and indeed by the test of nitrous air it did not appear to be near so good as common air. Continuing the same process still farther, the air which had been most strongly inflammable a little before, came to extinguish a candle, exactly like air in which a candle had burned out, nor could they be distinguished by the test of nitrous air.