The diminution of a mixture of this and common air is not an equal diminution of both the kinds, which is all that Dr. Hales could observe, but of about one fifth of the common air, and as much of the nitrous air as is necessary to produce that effect; which, as I have found by many trials, is about one half as much as the original quantity of common air. For if one measure of nitrous air be put to two measures of common air, in a few minutes (by which time the effervescence will be over, and the mixture will have recovered its transparency) there will want about one ninth of the original two measures; and if both the kinds of air be very pure, the diminution will still go on slowly, till in a day or two, the whole will be reduced to one fifth less than the original quantity of common air. This farther diminution, by long standing, I had not observed at the time of the first publication of these papers.

I hardly know any experiment that is more adapted to amaze and surprize than this is, which exhibits a quantity of air, which, as it were, devours a quantity of another kind of air half as large as itself, and yet is so far from gaining any addition to its bulk, that it is considerably diminished by it. If, after this full saturation of common air with nitrous air, more nitrous air be put to it, it makes an addition equal to its own bulk, without producing the least redness, or any other visible effect.

If the smallest quantity of common air be put to any larger quantity of nitrous air, though the two together will not occupy so much space as they did separately, yet the quantity will still be larger than that of the nitrous air only. One ounce measure of common air being put to near twenty ounce measures of nitrous air, made an addition to it of about half an ounce measure. This being a much greater proportion than the diminution of common air, in the former experiment, proves that part of the diminution in the former case is in the nitrous air. Besides, it will presently appear, that nitrous air is subject to a most remarkable diminution; and as common air, in a variety of other cases, suffers a diminution from one fifth to one fourth, I conclude, that in this case also it does not exceed that proportion, and therefore that the remainder of the diminution respects the nitrous air.

In order to judge whether the water contributed to the diminution of this mixture of nitrous and common air, I made the whole process several times in quicksilver, using one third of nitrous, and two thirds of common air, as before. In this case the redness continued a very long time, and the diminution was not so great as when the mixtures had been made in water, there remaining one seventh more than the original quantity of common air.

This mixture stood all night upon the quicksilver; and the next morning I observed that it was no farther diminished upon the admission of water to it, nor by pouring it several times through the water, and letting it stand in water two days.

Another mixture, which had stood about six hours on the quicksilver, was diminished a little more upon the admission of water, but was never less than the original quantity of common air. In another case however, in which the mixture had stood but a very short time in quicksilver, the farther diminution, which took place upon the admission of water, was much more considerable; so that the diminution, upon the whole, was very nearly as great as if the process had been intirely in water.

It is evident from these experiments, that the diminution is in part owing to the absorption by the water; but that when the mixture is kept a long time, in a situation in which there is no water to absorb any part of it, it acquires a constitution, by which it is afterwards incapable of being absorbed by water, or rather, there is an addition to the quantity of air by nitrous air produced by the solution of the quicksilver.

It will be seen, in the second part of this work, that, in the decomposition of nitrous air by its mixture with common air, there is nothing at hand when the process is made in quicksilver, with which the acid that entered into its composition can readily unite.

In order to determine whether the fixed part of common air was deposited in the diminution of it by nitrous air, I inclosed a vessel full of lime-water in the jar in which the process was made, but it occasioned no precipitation of the lime; and when the vessel was taken out, after it had been in that situation a whole day, the lime was easily precipitated by breathing into it as usual.

But though the precipitation of the lime was not sensible in this method of making the experiment, it is sufficiently so when the whole process is made in lime-water, as will be seen in the second part of this work; so that we have here another evidence of the deposition of fixed air from common air. I have made no alteration, however, in the preceding paragraph, because it may not be unuseful, as a caution to future experimenters.