To measure the degrees of heat and cold during a person's absence, Lord George Cavendish contrived an instrument, in which a small bason received the mercury, that was raised higher than the place for which it was regulated by heat or cold, without a power of returning. But Mr. Six has lately hit upon a better method, viz. introducing into the tube of his thermometer a small piece of iron, which is raised by the ascent of the mercury, and prevented from descending by a small spring; but which may be brought back to its former place by a magnet acting through the glass.

Heat, like light, is propagated in right lines; and what is more remarkable, cold observes the same laws. For if the substance emitting heat without light, as iron below ignition, be placed in the focus of a burning mirror, a thermometer in the focus of a similar mirror, placed parallel to it, though at a considerable distance, will be heated by it, and if a piece of ice be placed there, the mercury will fall.

Heat assists the solvent power of almost all menstrua; so that many substances will unite in a certain degree of heat, which will form no union at all without it, as dephlogisticated and inflammable air.

If substances be of the same kind, they will receive heat from one another, in proportion to their masses. Thus, if a quantity of water heated to 40° be mixed with another equal quantity of water heated to 20°, the whole mass will be heated to 30°. But if the substances be of different kinds, they will receive heat from each other in different proportions, according to their capacity (as it is called) of receiving heat. Thus, if a pint of mercury of the temperature of 136 be mixed with a pint of water of the temperature of 50, the temperature of the two after mixture will not be a medium between those two numbers, viz. 93, but 76; consequently the mercury was cooled 60°, while the water was heated only 26; so that 26 degrees of heat in water correspond to 60 in mercury. But mercury is about 13 times specifically heavier than water, so that an equal weight of mercury would contain only one thirtieth part of this heat; and dividing 26 by 13, the quotient is 2. If weight, therefore, be considered, the heat discovered by water should be reckoned as 2 instead of 60; and consequently when water receives 2 degrees of heat, an equal weight of mercury will receive 60°; and dividing both the numbers by 2, if the heat of water be 1, that of the mercury will be 30. Or since they receive equal degrees of heat, whether they discover it or not (and the less they discover, the more they retain in a latent state) a pound of mercury contains no more than one thirtieth part of the heat actually existing in a pound of water of the same temperature. Water, therefore, is said to have a greater capacity for receiving and retaining heat, without discovering it, than mercury, in the proportion of 30 to 1, if weight be considered, or of 60 to 26, that is of 30 to 13; if bulk be the standard, though, according to some, it is as 3 to 2.

The capacity of receiving heat in the substance is greatest in a state of vapour, and least in that of a solid; so that when ice is converted into water, heat is absorbed, and more still when it is converted into vapour; and on the contrary, when vapour is converted into water, it gives out the heat which it had imbibed, and when it becomes ice it gives out still more.

If equal quantities of ice and water be exposed to heat at the temperature of 32°, the ice will only become water, without receiving any additional sensible heat; but an equal quantity of water in the same situation would be raised to 178°, so that 146 degrees of heat will be imbibed, and remain in latent in the water, in consequence of its passing from a state of ice: and heat communicated by a given weight of vapour will raise an equal weight of a nonevaporable substance, of the same capacity with water, 943 degrees; so that much more heat is latent in steam, than in the water from which it was formed.

This doctrine of latent heat explains a great variety of phænomena in nature; as that of cooling bodies by evaporation, the vapour of water, or any other fluid substance, absorbing and carrying off the heat they had before.

Water, perfectly at rest, will fall considerably below the freezing point, and yet continue fluid: but on the slightest agitation, the congelation of the whole, or part of it, takes place instantly, and if the whole be not solid, it will instantly rise to 32°, the freezing point. From whatever cause, some motion seems necessary to the commencement of congelation, at least in a moderate temperature; but whenever any part of the water becomes solid, it gives out some of the heat it had before, and that heat which was before latent becoming sensible, and being diffused through the whole mass, raises its temperature.

On the same principle, when water heated higher than the boiling point in a digester is suddenly permitted to escape in the form of steam, the remainder is instantly reduced to the common boiling point, the heat above that point being carried off in a latent state by the steam.

Had it not been for this wise provision in nature, the whole of any quantity of water would, in all cases of freezing, have become solid at once; and also the whole of any quantity that was heated to the point of boiling, would have been converted into steam at once; circumstances which would have been extremely inconvenient, and often fatal.