Fig. 46. Comparison of flight trends and surface weather conditions on May 21-22, 1948. The meteorological data were taken from the U. S. Weather Bureau Daily Weather Map for 12:30 A. M. (CST) on May 22. The nightly station densities and the average hourly station density (shown in parentheses) are as follows:

2. Ottumwa: 6,900 (1,400)13. Oak Grove: 5,800 (800)
5. Louisville: 1,500 (200)14. Mansfield: 2,500 (800)
9. Knoxville: 3,200 (500)18. Pensacola: migration negligible
10. Memphis: 7,000 (1,200)21. Winter Park: 1,200 (200)

Fig. 47. Winds aloft at 10:00 P. M. on May 21 (CST). Winds at 2,000 feet above mean sea level are shown. Velocities are indicated by standard Beaufort Scale of Wind Force. The numbers in circles refer to the stations shown in [Figure 46].

On the first night, following the passage of a cold front, migration at Ottumwa was comparatively low (6,900 birds in five hours). On the following night, when the trajectory of the winds was toward the north, the volume of migration was roughly twice as high (22,300 birds in eight hours). At Louisville, on May 21-22, the nightly station density was only 1,500 birds in seven hours, whereas on the following night, it was 8,400 birds in the same length of time, or about six times greater.

The evidence adduced from the present study gives support to the hypothesis that the continental pattern of spring migration in eastern North America is regulated by the movement of air masses. The clockwise circulation of warm air around an area of high pressure provides, on its western edge, tail winds which are apparently favorable to northward migration. High pressure areas exhibit a centrifugal force outward from the center, which may tend to disperse the migratory flight originating at any given point. In contrast, the circulation of air in the vicinity of a low pressure area is counterclockwise with the force tending to be directed inward toward the center. Since the general movement of the air is from the high pressure area toward a low pressure area, birds starting their migrations with favorable tail winds, are often ultimately carried to a region where conditions are decidedly less favorable. In the vicinity of an area of low pressure the greater turbulence and high wind velocities, combined with the possibly slightly less buoyant property of the air, cause birds to descend. Since low pressure areas in spring generally precede cold fronts, with an attending shift of the wind to the north, an additional barrier to the northward migration of birds is imposed. The extreme manifestation of low pressure conditions and the manner in which they operate against bird flight, are associated with tropical hurricanes. There, the centripetal force of the wind is so great that it appears to draw birds into the "eye" of the hurricane. A classic example of this effect is seen in the case of the birds that came aboard the "West Quechee" when this vessel passed through the "eye" of a hurricane in the Gulf of Mexico in August, 1927. I have already discussed the details of this incident in a previous paper (1946:192). There is also the interesting observation of Mayhew (1949), in which a similar observation was made of large numbers of birds aboard a ship passing through one of these intense low-pressure areas.

Although the forces associated with an ordinary low-pressure area are by no means as intense as those associated with a tropical hurricane, the forces operating are much the same. Consequently birds conceivably might tend to be drawn toward a focal point near the center of the low, where the other factors already mentioned would tend to precipitate the entire overhead flight. Visible evidence of migration would then manifest itself to the field ornithologists.

CONCLUSIONS