"To speak otherwise, it is a calculus by which you seek finished quantities of what you know the differential quantities."

"That is clear at least," answered Barbicane with a quite satisfied air.

"And now," continued Barbicane, "for a piece of paper and a pencil, and in half-an-hour I will have found the required formula."

That said, Barbicane became absorbed in his work, whilst Nicholl looked into space, leaving the care of preparing breakfast to his companion.

Half-an-hour had not elapsed before Barbicane, raising his head, showed Michel Ardan a page covered with algebraical signs, amidst which the following general formula was discernible:—

1 2 2 r m' r r - (v - v ) = gr { —- - 1 + —- ( —- - —-) } 2 0 x m d-x d-r

"And what does that mean?" asked Michel.

"That means," answered Nicholl, "that the half of v minus v zero square equals gr multiplied by r upon x minus 1 plus m prime upon m multiplied by r upon d minus x, minus r upon d minus x minus r—"

"X upon y galloping upon z and rearing upon p" cried Michel Ardan, bursting out laughing. "Do you mean to say you understand that, captain?"

"Nothing is clearer."