Fresh-water animals succeeded those of salt water in the swamps that formed the coal measures. Overhead, the first insects flitted among the branches of the tree ferns. Dragon-flies darted above the surface and dipped in water as they do to-day. Spiders, scorpions, and cockroaches, all air-breathing insects, were represented, but none of the higher, nectar-loving insects, like flies and bees and butterflies, were there. Flowering plants had not yet appeared on the earth. Snakelike amphibians, some fishlike, some lizard-like, and huge crocodilian forms appeared for the first time. These air-breathing swamp-dwellers could not have lived in salt water.

Fresh-water molluscs and land shells appear for the first time as fossils in the rocks of the coal measures. On the shores of the ocean, the rocks of this period show that trilobites, horseshoe crabs, and fishes still lived in vast numbers, and corals continued to form limestone. The old types of marine animals changed gradually, but the coal measures show strikingly different fossils. These rocks bear the first record of fresh-water and land animals.


THE MOST USEFUL METAL

It is fortunate for us all that, out of the half-dozen so-called useful metals, iron, which is the most useful of them all to the human race, should be also the most plentiful and the cheapest. Aluminum is abundant in the common clay and soil under our feet. But separating it is still an expensive process; so that this metal is not commercially so plentiful as iron is, nor is it cheap.

All we know of the earth's substance is based on studies of the superficial part of its crust, a mere film compared with the eight thousand miles of its diameter. Nobody knows what the core of the earth—the great globe under this surface film—is made of; but we know that it is of heavier material than the surface layer; and geologists believe that iron is an important element in the central mass of the globe.

One thing that makes this guess seem reasonable is the great abundance of iron in the earth's crust. Another thing is that meteors which fall on the earth out of the sky prove to be chiefly composed of iron. All of their other elements are ones which are found in our own rocks. If we believe that the earth itself is a fragment of the sun, thrown off in a heated condition and cooling as it flew through space, we may consider it a giant meteor, made of the substances we find in the chance meteor that strikes the earth.

Iron is found, not only in the soil, but in all plant and animal bodies that take their food from the soil. The red colour in fruits and flowers, and in the blood of the higher animals, is a form in which iron is familiar to us. It does more, perhaps, to make the world beautiful than any other mineral element known.

But long before these benefits were understood, iron was the backbone of civilization. It is so to-day. Iron, transformed by a simple process into steel, sustains the commercial supremacy of the great civilized nations of the world. The railroad train, the steel-armoured battleship, the great bridge, the towering sky-scraper, the keen-edged tool, the delicate mechanism of watches and a thousand other scientific instruments—all these things are possible to-day because iron was discovered and has been put to use.

It was probably one of the cave men, poking about in his fire among the rocks, who discovered a lump of molten metal which the heat had separated from the rest of the rocks. He examined this "clinker" after it cooled, and it interested him. It was a new discovery. It may have been he, or possibly his descendants, who learned that this metal could be pounded into other shapes, and freed by pounding from the pebbles and other impurities that clung to it when it cooled. The relics of iron-tipped spears and arrows show the skill and ingenuity of our early ancestors in making use of iron as a means of killing their prey. The earliest remains of this kind have probably been lost because the iron rusted away.