To attempt to give an account of all the systematists of England, France, Italy, Germany, and the Netherlands during this period would serve only to obscure the subject; all that is historically important will be brought out more clearly by mentioning those only who have really enriched systematic botany. Whoever wishes for a more complete knowledge of all the systems which made their appearance before Linnaeus will find a masterly account of them in his ‘Classes Plantarum,’ and another worth consulting in Michel Adanson’s ‘Histoire de la Botanique’ (Paris, 1864). It is sufficient for our present purpose to consider more particularly the labours of the four men whose names have recently been mentioned.
Robert Morison[21], who was born in Aberdeen in 1620 and died in London in 1683, was the first after Cesalpino and Bauhin who devoted himself to systematic botany, that is, to founding and perfecting the classification of plants. He was reproached by his contemporaries and successors with having borrowed without acknowledgment from Cesalpino; this was an exaggeration. Morison commenced his efforts as a systematist with a careful examination of Kaspar Bauhin’s ‘Pinax’; there he obtained his conceptions of natural relationship in plants; and if he afterwards founded his own system more peculiarly on the forms of the fruit, it was in a very different way from that adopted by Cesalpino. Linnaeus answers the reproach above-mentioned by the pertinent remark, that Morison departs as far from Cesalpino in this point as he is inferior to him in the purity of his method. In the year 1669 appeared a work with the characteristic title, ‘Hallucinationes Kaspari Bauhini in Pinace tum in digerendis quam denominandis plantis,’ which Haller justly calls an ‘invidiosum opus’; for as there are writers at all times who ungratefully accept all that is good and weighty in their predecessors as self-evident, while they point with malicious pleasure to every little mistake which the originator of a great idea may commit, so Morison has no word of recognition for the great and obvious merits of the ‘Pinax,’ though such a recognition was specially due from one whose design was to point out the numerous mistakes in that work on the subject of affinities. Kurt Sprengel in his ‘Geschichte,’ ii. p. 30, also suspects with reason that Jung’s manuscript, which was communicated by Hartlieb to Ray in 1661, was not unknown to Morison, and in this paper he might certainly have found much that suited his purposes. Sprengel says well, that the ‘Hallucinationes’ are a well-grounded criticism of the arrangement of plants, which the Bauhins had chosen; that the writer goes through the ‘Pinax’ page by page, and shows what plants occupy a false position, and that it is certain that Morison laid the first foundation of a better arrangement and a more correct discrimination of genera and species.
His ‘Plantarum umbelliferarum distributio nova,’ Oxford, 1672, shows considerable advance; it is the first monograph which was intended to carry out systematic principles strictly within the limits of a single large family. The very complex arrangement is founded exclusively on the external form of the fruit, which he naturally terms the seed. It is the first work in which the system is no longer veiled by the old arrangement in books and chapters, perspicuity being provided for by typographical management,—an improvement which de l’Obel, it is true, made a feeble attempt to introduce a hundred years before. Morison also endeavours to give a clear idea of the systematic relations within the family by the aid of linear arrangement, to some extent the first hint of what we now call a genealogical tree, and a proof at any rate of the lively conception which he had formed of affinity, not drawn indeed only ‘ex libro naturae,’ as the title of his book states, but in principle from Bauhin. Morison’s inability to appreciate the merits of his predecessors, and to believe that when he made a step in advance the way had ever been trodden before, may be seen in this work also. One of its merits is, that it contains for the first time careful representations of separate parts of plants, executed in copper plate[22]. In 1680 appeared the first volumes of his ‘Historia plantarum universalis Oxoniensis,’ the third portion of which was published after his death by Bobart in 1699,—a collection of most of the plants then known and a large number of new ones with descriptions; the systematic arrangement in this work is to be seen in Linnaeus’ ‘Classes Plantarum.’ If Morison in his criticism of Bauhin displayed considerable acuteness within narrow circles of affinity, his universal system on the contrary shows extremely small feeling for affinities on the large scale; the most different forms are brought together even in the smaller divisions; the last class of his Bacciferae, for example, contains genera like Solanum, Paris, Podophyllum, Sambucus, Convallaria, Cyclamen, a result which is the more surprising as Morison does not, like Cesalpino, confine himself to single fixed marks, but has regard also to the habit. On the whole his arrangement as an expression of natural affinities must be ranked after those of de l’Obel and Bauhin.
Morison’s merit lay in truth less in the quality of what he did, than in the fact that he was the first to renew the cultivation of systematic botany on a comprehensive scale. The number of his adherents was always small; in Germany Paul Ammann, Professor in Leipsic, adopted Morison’s views in his ‘Character Plantarum Naturalis’ (1685), and Paul Hermann, Professor in Leyden from 1679 to 1695, after collecting plants in Ceylon for eight years, proposed a system founded on that of Morison, but which can scarcely be called an improvement upon it.
In contrast to Morison, John Ray[23] (1628 to 1705) not only knew how to adopt all that was good and true in the works of his predecessors, and to criticise and complete them from his own observations, but could also joyfully acknowledge the services of others, and combine their results and his own into a harmonious whole. He wrote many botanical works; but none display his character as a man and a naturalist better than his comprehensive ‘Historia Plantarum,’ published in three large folio volumes without plates in the period from 1686 to 1704. This work contains a series of descriptions of all plants then known; but the first volume commences with a general account of the science in fifty-eight pages, which, printed in ordinary size, would itself make a small volume, and which treats of the whole of theoretic botany in the style of a modern text-book. If morphology, anatomy, and physiology, in which latter subject he relies on the authority of Malpighi and Grew, are not kept strictly apart in his exposition, yet it is easy to separate the morphological part, and his theory of systematic botany is in fact given separately. Jung’s definitions of the subject-matter of each of the chapters on morphology are first given, and Ray then adds his own remarks, in which he criticises, expands, and supplements those of his predecessor. Omitting all that is not his own, and the anatomical and physiological portions, we will describe some of the more important results of his studies on system. First and foremost Ray adopted the idea which Grew had conceived, but in a very clumsy form, that difference of sex prevails in the vegetable kingdom, and hence the flower had a different meaning and importance for him from what it had had for his predecessors, though his views on the subject were still indistinct. Ray perceived more clearly than Cesalpino that many seeds contain not only an embryo but also a substance, which he calls ‘pulpa’ or ‘medulla,’ and which is now known as the endosperm, and that the embryo has not always two cotyledons, but sometimes only one or none; and though he was not quite clear as regards the distinction, which we now express by the words dicotyledonous and monocotyledonous embryo, yet he may claim the great merit of having founded the natural system in part upon this difference in the formation of the embryo. He displays more conspicuously than any systematist before Jussieu the power of perceiving the larger groups of relationship in the vegetable kingdom, and of defining them by certain marks; these marks moreover he determines not on a priori grounds, but from acknowledged affinities; but it is only in the great divisions of his system that he is thus true to the right course; in the details he commits many and grievous offences against his own method, as we shall see below when we come to an enumeration of his classes. Modern writers have often attributed to Ray the merit of having first taught the transmutation of species, and of being thus one of the founders of the theory of descent. Let us see how much truth there is in this assertion. Though plants, says Ray, which spring from the same seed and produce their species again through seed, belong to the same species, yet cases may occur in which the specific character is not perpetual and infallible. Seeds may sometimes degenerate and produce plants specifically distinct from the mother-plant, though this may not often happen, and so there would be a transmutation of species, as experience teaches. It is true that he considered the statements of various writers, that Triticum may change into Lolium, Sisymbrium into Mentha, Zea into Triticum, etc., to be very doubtful, yet there were, he thought, other cases which were well ascertained; it was in evidence in a court of law that a gardener in London had sold cauliflower seed which had produced only common cabbage. It is to be observed, he says, that such transmutations only occur between nearly allied species and such as belong to the same genus, and some perhaps would not allow that such plants are specifically distinct. These words, especially when judged by Ray’s general views, appear only to express the opinion that certain inconsiderable variations are possible within a narrow circle of affinity, especially in cultivated plants. Ray does not speak of the appearance of new forms, but says that a known form changes into another already existing and known form, which is the reverse of that which the theory of descent requires.
In his development of the principles of his system, among other errors we encounter one that leads to very important consequences in his application of the dictum, ‘natura non facit saltus,’ which he interprets as though all affinities must present themselves in a series that would be represented by a straight line,—an error which has misled systematists even in recent times, and was first recognised as an error by Pyrame de Candolle. Ray overlooked the fact that the dictum holds good even when the affinities arrange themselves in the form of branching series, that is, after the manner of a genealogical tree. Much more sound is his remark, that the framing of the true system had previously been impossible, because the differences and agreements of forms were not sufficiently known; and another saying of his, that nature refuses to be forced into the fetters of a precise system, shows the dawn of the knowledge which afterwards led in Linnaeus to a strict separation of the natural and artificial systems.
It excites no small astonishment after all Ray’s judicious and clear-sighted utterances on the nature and method of the natural system to find him adopting the division into woody plants and herbs; nor is the matter improved by his making the distinctive mark of trees and shrubs to be the forming of buds, that is, distinct winter buds, which is a mistake into the bargain. Yet we feel ourselves in some degree compensated for this serious error by his dividing trees and herbs into those with a two-leaved and those with a one-leaved or leafless embryo, in modern language into Dicotyledons and Monocotyledons. Ray’s system is undoubtedly the one which in the time preceding Linnaeus does most justice to natural affinities. The following synopsis of his Classes will serve to show the progress made since Cesalpino. The names in brackets are the Linnaean names for some of the genera in particular classes.
A. Plantae gemmis carentes (herbae).
(a) Imperfectae.
- I. Plantae submarinae (chiefly Polypes, Fucus).
- II. Fungi.
- III. Musci (Confervae, Mosses, Lycopods).
- IV. Capillares (Ferns, Lemna, Equisetum).