Starting from the hypothesis, that the oil which clings to the pollen-grains is the fertilising substance, Koelreuter propounds his view of the process of fertilisation in accordance with the chemical notions of the day; he first rejects the idea that the pollen-grains themselves can reach the ovary, and then says: ‘Both the male seed and the female moisture on the stigmas are of an oily nature, and therefore when they come together enter into a most intimate union with one another, and form a substance which, if fertilisation is to ensue, must be absorbed by the stigma and conveyed through the style to the so-called ovules or unfertilised germs.’ Koelreuter therefore made the fertilisation really take place on the stigma, the mingled male and female substance making its way into the ovary and there producing the embryos in the seed. He had expressed this view before in 1761; he repeated it in 1763 with the idea that the male and female moistures unite together, as an acid and an alkali unite to form a neutral salt; a new living organism is the result at once or later of this union. In an investigation which he made in 1775 into the conditions of pollination in Asclepiadeae he reverted to this idea, and insisted that the act of fertilisation in the whole vegetable and animal kingdom is a mingling of two fluids. But at a later period he seems to have no longer considered the moisture of the stigma to be the female principle, for experiment had taught him, that if a stigma exchanges the moisture from another stigma for its own, and is then dusted with its own pollen, no hybrid form is produced[106]. In any case Koelreuter had a more correct idea of the nature of sexual fertilisation than any of his predecessors, and it was one specially adapted to enable his contemporaries to understand the results of experiments in hybridisation, while the hybrids themselves supplied most convincing arguments against the prevailing theory of evolution.
We have arrived at Koelreuter’s most important performance, the production of hybrids. Here was a case for skilful experimentation, not for microscopic observation, and here he obtained results in which nothing afterwards required to be changed, but which when combined with later observations have been used for the discovery of general laws in hybridisation. The first hybrid which he obtained by placing the pollen of Nicotiana paniculata on the stigmas of N. rustica, produced pollen that was impotent; but he soon after obtained hybrids from the two species which produced seeds capable of germination, and in 1763 he described a considerable number of hybrids in the genera Nicotiana, Kedmia, Dianthus, Matthiola, Hyoscyamus, and others. In the last portion of his great work (1766) he speaks of eighteen attempts to obtain hybrids with five native species of Verbascum, and submits Linnaeus’ views on hybrid plants, which we have already described, to a withering criticism. He shows at the same time from experiment, that if the stigma of a plant receives its own pollen and pollen from another plant at the same time, the former only is effectual, and that this is one reason why hybrids which can be raised artificially are not found in nature. We must not attempt to give a detailed account of his famous hybrids of the third, fourth, and fifth degrees, nor of his experiments on other points, such as the reverting of hybrids to the original form by the repeated employment of its pollen; the value of these experiments for theoretical purposes was afterwards fully brought out by Nägeli.
It is impossible to rate too highly the general speculative value of Koelreuter’s artificial hybridisation. The mingling of the characters of the two parents was the best refutation of the theory of evolution, and supplied at the same time profound views of the true nature of the sexual union. It was shown by his numerous experiments that only nearly allied plants and not always these are capable of sexual union, which at once disposed of Linnaeus’ vague ideas in the judgment of every capable person, though it was long before science candidly accepted Koelreuter’s results. The plant-collectors of the Linnaean school as well as the true systematists at the end of the 18th century had little understanding for such labours as Koelreuter’s, and incorrect ideas on hybrids and their power of maintaining themselves prevailed in spite of them in botanical literature. Hybrids were necessarily inconvenient to the believers in the constancy of species; they, disturbed the compactness of their system and would not fit in with the notion that every species represented an ‘idea.’
Koelreuter’s doctrines however did not always fall on unfruitful soil; two botanists at least were found in Germany who adopted them, Joseph Gärtner the author of the famous Carpology and father of Carl Friedrich Gärtner who at a later time spent twenty-five years in experimenting on fertilisation and hybridisation, and Konrad Sprengel who took up Koelreuter’s discovery of the services rendered by insects and arrived at some new and very remarkable results.
Joseph Gärtner made no fresh observations on sexuality himself, but in the Introduction to his ‘De fructibus et seminibus plantarum’ (1788) he made use of Koelreuter’s results for the purpose of distinguishing more clearly between different kinds of propagation, and strengthening his own attack on the theory of evolution. The germ-grains or spores of cryptogamic plants were at that time often regarded on insufficient grounds as true seeds; Gärtner distinguished them from seeds, because they are formed without fertilisation and yet are capable of germination, whereas ovules become seeds capable of germination only under the influence of the pollen. He distinctly denied the sexuality of the Cryptogams; it was not till fifty years later that strict scientific proof was substituted in this department of botany for vague conjecture, and it was more in the interest of true science in Gärtner’s day to deny sexuality in the Cryptogams altogether, than to take the stomata in Ferns with Gleichen, or the indusium with Koelreuter, or the volva in Mushrooms for the male organs of fertilisation. Gärtner rightly appealed to Koelreuter’s hybrids against the defenders of the theory of evolution; and to those who saw in the seed only another form of vegetative bud, he said, that the bud can produce a new plant without fertilisation but that the seed cannot. We have already given an account in the chapters on Systematic Botany of the services rendered by Gärtner to the knowledge of the seed in its immature and in its mature condition; as regards the process of fertilisation he adopted in the main Koelreuter’s view, that it is the result of the union of a male and female fluid, from which the germ-corpuscle in the ovule is developed by a kind of crystallisation. Konrad Sprengel also fully committed himself to this view, and was thereby prevented from understanding the process of fertilisation in Asclepiadeae.
In Konrad Sprengel[107] we encounter once more an observer of genius, like Camerarius and Koelreuter, who however surpassed them both in boldness of conception and was therefore even less understood by his contemporaries and successors, than they had been by theirs. The conclusions, to which his investigations led him, were so surprising, they suited so little with the dry systematism of the Linnaean school and with later views on the nature of plants, that they had become quite forgotten when Darwin brought them again before the world and showed their important bearing on the theory of descent. As Camerarius first proved that plants possess sexuality, and Koelreuter showed that plants of different species can unite sexually and produce fruitful hybrids, so now Sprengel showed that a certain form of hybridisation is common in the vegetable kingdom, namely the crossing of different flowers or different individuals of the same species. In his work, ‘Das neu entdeckte Geheimniss der Natur in Bau und Befruchtung der Blumen,’ Berlin, 1793, he says at page 43: ‘Since very many flowers are dioecious, and probably at least as many hermaphrodite flowers are dichogamous, nature appears not to have intended that any flower should be fertilised by its own pollen.’ This was however only one of his surprising conclusions; still more important perhaps was the view, that the construction and all the peculiar characters of a flower can only be understood from their relation to the insects that visit them and effect their pollination; here was the first attempt to explain the origin of organic forms from definite relations to their environment. Since Darwin breathed new life into these ideas by the theory of selection, Sprengel has been recognised as one of its chief supports.
It is highly interesting to read, how this speculative mind by the study of structural relations in flowers, which were apparently trivial and open to the eyes of all men, first arrived at ideas which in the course of a few years were to lead to such far-reaching results. He says: ‘In the summer of 1787 I was attentively examining the flowers of Geranium sylvaticum, and observed that the lower part of the petals was provided with slender rough hairs on the inside and on both edges. Convinced that the wise framer of nature has not produced a single hair without a definite purpose, I considered what end these hairs might be intended to serve. And it soon occurred to me, that on the supposition that the five drops of juice which are secreted by the same number of glands are intended for the food of certain insects, it is not unlikely that there is some provision for protecting this juice from being spoiled by rain, and that the hairs might have been placed where they are for this purpose. Since the flower is upright, and tolerably large, drops of rain must fall into it when it rains. But no drop of rain can reach one of the drops of juice and mix with it, because it is stopped by the hairs, which are over the juice-drops, just as a drop of sweat falling down a man’s brow is stopped by the eye-brow and eye-lash, and hindered from running into the eye. An insect is not hindered by these hairs from getting at the drops of juice. I examined other flowers and found that several of them had something in their structure, which seemed exactly to serve this end. The longer I continued this investigation, the more I saw that flowers which contain this kind of juice are so contrived, that insects can easily reach it, but that the rain cannot spoil it; but I gathered from this that it is for the sake of the insects that these flowers secrete the juice, and that it is secured against rain that they may be able to enjoy it pure and unspoilt.’ Next year, following out an idea suggested by the flowers of Myosotis palustris, he found that the position of spots of different colours on the corolla have some connection with the place where the juice is secreted, and with the same ready reasoning as before he came to the further conclusion: ‘If the corolla has a particular colour in particular spots on account of the insects, it is for the sake of the insects that it is so coloured; and if the particular colour of a part of the corolla serves to show an insect which has lighted on the flower the direct path to the juice, the general colour of the corolla has been given to it, in order that insects flying about in search of their food may see the flowers that are provided with such a corolla from a long distance, and know them for receptacles of juice.’
He afterwards discovered that the stigmas of a species of Iris were absolutely unable to be fertilised in any other way than by insects, and further observation convinced him more and more, ‘that many, perhaps all flowers, which have this juice, are fertilised by the insects which feed on it, and that consequently this feeding of insects is in respect of themselves an end, but in respect of the flowers only a means, but at the same time the sole means to a definite end, namely, their fertilisation; and that the whole structure of such flowers can be explained, if in examining them we keep in sight the following points, first, that flowers were intended to be fertilised by the agency of one or another kind of insects, or by several; secondly, that insects in seeking the juice of flowers, and for this purpose either alighting upon them in an indefinite manner, or in a definite manner either creeping into them or moving round upon them, were intended to sweep off the dust from the anthers with their usually hairy bodies or with some part of them, and convey it to the stigma, which is provided either with short and delicate hairs, or with a viscid moisture, that it may retain the pollen.’
In the summer of 1790 he detected dichogamy, which he first observed in Epilobium angustifolium. He found, ‘that these hermaphrodite flowers are fertilised by the humble-bee and by other bees, and that the individual flower is not fertilised by its own pollen, but the older flowers by the pollen which the insects convey to them from the younger.’ Having observed the same thing in Nigella arvensis, he afterwards found exactly the opposite arrangement in a species of Euphorbia, in which the stigmas can receive the pollen by the aid of insects only from older flowers.
He goes on to say that he grounds his theory of flowers on these his six chief discoveries made in the course of five years; he then gives his theory at length, first of all explaining the nature of juice-secreting glands (nectaries), and organs for receiving or covering the nectar, and the contrivances for enabling insects to find their way readily to the juice. He calls attention to Koelreuter’s excellent observations on the fertilisation of nectar-bearing flowers by insects, and notices that no one has hitherto shown that the whole structure of such flowers has this object in view, and can be fully explained by it. He finds the chief proof of this important proposition in dichogamy.