The better form of the idea, namely, that there is a return-movement of material towards the root, combined with the view, that the leaves are the organs which produce the substances required for growth from the crude material supplied to them, was expressed by Malpighi as early as 1771 in the shape of a well-considered theory. In his ‘Anatomes plantarum idea’ of that year he devotes the last pages to a short account of the theory of nutrition, as he understood it. He regarded the fibrous constituents of the wood as the organs for conducting the sap taken up by the roots, and the vessels as air-passages, which he named tracheae on account of their resemblance to the tracheae of insects. He was in doubt whether the air came from the earth through the roots, or from the atmosphere through the leaves, for he had never succeeded in finding openings for the entrance of air in the roots or the leaves; but he thought it more probable that the air is absorbed by the roots, because they are well supplied with tracheae, and air has besides a tendency to ascend. Beside these fluid-conducting fibres and air-conducting tracheae in the wood he called attention to the existence of special vessels, which conduct peculiar juices in many plants, as the laticiferous vessels, gum-passages, and turpentine-canals.
Respecting the movement of the juices, he notices that the direction may be reversed, because shoots planted upside down send out roots into the earth from what is organically their upper end, and grow into trees; and though they do not grow vigorously, yet the experiment proves that the movement of the sap in them is in the reverse direction.
After these preliminary remarks he proceeds to prove, that it is in the leaves that the crude juices of nutrition undergo the change which fits them for the maintenance of growth. The way in which Malpighi arrives at this view is as simple as it is original. He considers the cotyledons of young plants to be genuine leaves (in leguminibus seminalis caro, quae folium est conglobatum), as is shown in the gourd, where the cotyledons grow into large green leaves. Liquid is conveyed to them through the radicle, and a portion of the substances which they contain passes from them into the plumule to make it grow, which it will not do if the cotyledons are removed; hence he concludes that all other leaves also are intended to elaborate (excoquere) the nutritive juice contained in their cells, which the woody fibres have conveyed to them. The liquids mingled together in their long passage through the network of fibres are changed in the leaves by the power of the sun’s rays, and blended with the sap before contained in their cells, and thus a new combination of the constituent parts is effected, transpiration proceeding at the same time; he compares the whole process with that which goes on in the blood of animals.
We see that Malpighi’s view of the function of the leaves in nutrition approaches very closely to the truth, as closely indeed as was at all possible in the existing condition of chemical knowledge. He was induced by the results of anatomical investigation to carry this view farther and indeed correctly; he supposed that the parenchymatous tissue of the rind acts in the same way as the leaves; but he went a step too far in assigning the function of the leaves to the colourless parenchyma also, which only serves for the storing up of assimilated matter. He says we must ascribe a character similar to that of the leaf-cells to the corresponding cells in the rind and to those also which lie transversely in the wood (the medullary and cortical rays), and that it is not unreasonable to conclude that the food of the plant is elaborated and stored up in these cells. As he makes no sharp distinction between elaboration and mere storing up, he ascribes the function of the leaves to the parenchyma of fleshy fruits also and to the scales of bulbs; he concludes from the exudations from stumps of trees and from the cut surfaces of other parts of plants, that they are filled with reserve-matter (asservato humore turgent).
Thus the essential points in Malpighi’s theory of nutrition in the year 1671 were, that the vessels of the wood are primarily air-conducting organs, that the leaves elaborate the crude sap for purposes of growth, that the sap so elaborated is stored up in different parts of the plant, and that the fibrous elements of the wood convey upwards to the leaves the crude materials of nutrition which are absorbed by the roots. No mention is made of a circulation of juices, comparable to the circulation of the blood, though this idea was in later times often imputed to him; and we find by his later remarks, that while he was in no doubt as to the elementary organs which convey the ascending sap, he confined himself to conjecture with respect to the way by which the sap elaborated in the cell-tissue of the leaves, rind and parenchyma generally is carried on its further course. But he was in no doubt about the direction of that course; he believed that this sap forces itself downwards through the stem into the roots, and upwards in the branches above the leaves and so into the fruit. Thus Malpighi had formed a more correct idea of the movement of assimilated matter than the majority of his successors who introduced the very unsuitable expression, ‘descending sap.’ He further thought it probable that the elaborated sap passes through the bast-bundles[119], but without a continuous flux and reflux (absque perenni et considerabili fluxu et refluxu); that it rests to some extent in the laticiferous vessels, but that it is also driven sometimes, when occasion requires, by transpiration and external causes into the higher parts of the plant, where it is the means of maintaining growth and nutrition. These later remarks also are better than much that was said about the movement of the sap in the 18th and even in the 19th century, and at all events they prove that to speak of Malpighi as a defender of the circulation of the sap in Major’s sense, as was often done in later times, was an entire misunderstanding of his views.
Malpighi published his theory in a brief and connected form in 1671; it appeared again further worked out in detail in the fuller edition of the Phytotomy in 1674; he attributed a special value to his discovery, that plants require air to breathe as much as animals, and that the vessels of the wood answer in function to the tracheae in insects and to the lungs in other animals; he recurs also several times to the importance of leaves as organs for the elaboration of the food.
If we compare Malpighi’s theory of the nutrition of plants with the views of his predecessors, we cannot help seeing, that it was an entirely new creation, in which Aristotelian doctrines had no share. If his successors had apprehended the important and essential points in his doctrine and had striven by experimenting on living plants to support and illustrate them by new facts, we should have been spared many erroneous notions which established themselves in the theory, and made it a perfect chaos of misconceptions. That particular misconception, which we have already mentioned more than once, namely, that Malpighi, like Major and Perrault after him, assumed a continuous circulation of the juices of the plant, necessarily involved an incorrect idea of the function of the leaves; that function was by many later writers either quite neglected, or sought for chiefly in transpiration, the chemical activity of the leaves being quite overlooked.
Malpighi’s theory can hardly be said to take into consideration the chemical nature of the food of plants; it is chiefly occupied with the relation of the organs to the main points in the nutritive process; its foundations are for the most part laid in the anatomy of the plant. Grew, who in all essential points adopted Malpighi’s views, but without doing much to advance them by his lengthy discussions on particular questions, made some attempt to extend the knowledge of the chemistry of the subject; but his notions were entirely borrowed from the corpuscular theory of Descartes, and he may be said to have constructed his own chemical processes; the consequence was that he usually overlooked the points that were of fundamental importance, and brought nothing to light that could assist the further development of the theory of nutrition. But there is another writer, whose name is in the present day known to few in the history of vegetable physiology, but whose ideas on the chemistry of plants are of great interest. This writer is Mariotte[120], the discoverer of the well-known law of gases, one of the greatest physicists of the latter half of the 17th century, who also enriched the physiology of the human body with some valuable discoveries. We have a tolerably copious treatise of Mariotte’s in the form of a letter to a M. Lantin in the year 1679, to be found in the ‘Œuvres de Mariotte,’ Leyden, 1717, under the title, ‘Sur le sujet des plantes.’ It is highly instructive to gather from this letter the ideas of one of the most famous and ablest of the natural philosophers of that day on chemical processes and conditions in the nutrition of plants, a few years after the appearance of Malpighi’s great work and about the time that Grew’s Phytotomy was being published. It is to be expected that Mariotte should give but an incidental and superficial attention to the more delicate structure of plants; but we are compensated for this by his making us acquainted with everything fundamentally important and new which could at that time be said on the chemistry of the food of plants. Speaking of the ‘elements’ or ‘principles’ of plants, Mariotte propounds three hypotheses. The first is, that there are many immediate principles (principes grossiers et visibles, evidently what we should call proximate constituents) in plants, such as water, sulphur or oil, common salt, nitre, volatile salt or ammonia, certain earths, etc.; and that each of these immediate constituents is a compound of three or four more simple principles, which have united together into one body; nitre for instance has its ‘phlegma’ or tasteless water, its ‘spiritus,’ its fixed salt, and other things; common salt in the same way has the like constituents, and it may be assumed with much probability, that these more simple principles also are compounds of parts that differ among themselves, but are too small to be distinguished by any artificial means as to figure or any other characters. Having shown how certain principles unite together, he goes on to say, that he is unwilling to ascribe to them any sort of consciousness (connaissance) by which they seek to unite together; but he thinks that they are endowed with a natural disposition to move towards one another, and to unite closely as soon as they touch one another; though it is very difficult to define the nature of this disposition, it is enough to know that there are many instances of such movements to be found in nature; thus heavy bodies move towards the centre of the earth, and iron to the magnet; nor are these movements more difficult to conceive, than that of the planets in their courses or of the sun round its axis, or that of the heart in a living animal. With this first hypothesis Mariotte places himself, in opposition to the Aristotelian doctrine with its entelechies and final causes which prevailed at that time among botanists and physiologists, upon the firm ground of modern science with its atoms, and its assumption of necessarily active forces of attraction.
Mariotte’s second hypothesis more specially concerns the chemical nature of plants; he supposes that several of his principes grossiers are contained in every plant, and he endeavours first to explain their source; the motes in the air, he says, which when burnt by lightning smell of sulphur, are carried by rain into the earth, and parts of them are taken up into the plant. Moreover distillation in all plants produces a water, which the chemists call phlegma, and also acids and ammonia, and if the residuum is burnt there remains an ash, from which we obtain an earth which is without taste and insoluble in water, and fixed salts; these salts differ from one another according as they are mixed with more or less acid and ammoniacal spirit or other unknown principles, which the fire could not volatilise. It is not to be wondered at that these principles are found in plants, since they derive their food from the earth which contains them. We see how great has been the advance since the time when Van Helmont believed that he had proved by his experiment, that all the materials in plants come from pure water.
It remained to confront one view of the source of the substances in plants, which was also drawn from the treasure-house of Aristotelian conceptions, and was still in vogue. It was supposed that the very materials of which the plant is composed were contained in their own form in the earth, and had only to be taken up by the roots. Aristotle had himself said: ‘Everything feeds on that of which it consists, and everything feeds on more than one thing; whatever appears to feed only on one thing, as the plant on water, feeds on more than one thing, for earth in the case of the plant is mixed with the water; therefore the country-people water plants with mixtures of things.’ This passage might leave some doubt about Aristotle’s view, if we did not find the following: ‘As many savours as there are in the rinds of fruits, so many it is plain prevail also in the earth. Therefore also many of the old philosophers said, that the water is of as many kinds as the ground through which it runs[121].’ These passages taken with those quoted above show that Aristotle made the substances required for the growth of plants reach them from the earth ready elaborated, as has been before observed; and this view, still maintained in Mariotte’s time, may yet be met with among those who are ignorant of physiology. It is interesting then to see, how vigorously Mariotte exposes the incorrectness and absurdity of this idea, though he has no new discovery to help him. In his third hypothesis he maintains, that the salts, earths, oils, and other things, which different species of plants yield by distillation, are always the same, and that the differences are due entirely to the way in which these principes grossiers and their simplest parts are united together or separated, and he proves it thus: If a bonchretien pear is grafted on a wild one, the same sap, which in the wild plant produces indifferent pears, produces good and well-flavoured pears on the graft; and if this graft has a scion from the wild pear again grafted on it, the latter will bear indifferent fruit. This shows that the same sap in the stem assumes different qualities in each graft. But still more forcible is his proof of the fact, that plants do not take their substance direct from the earth, but produce it themselves by chemical processes. Take a pot, he says, with seven to eight pounds of earth and grow in it any plant you like; the plant will find in this earth and in the rain-water which has fallen on it all the principles of which it is composed in its mature state. You may put three or four thousand different kinds of plants in this earth; if the salts, oils, earths were different in each species of plant, all these principles must be contained in the small quantity of earth and rain-water which falls upon it in the course of three or four months, which is impossible; for each of these plants would yield in the mature state a dram of fixed salt at least and two drams of earth, and all these principles together with those which are mixed with the water would weigh at least from two to three ounces, and this multiplied by four thousand, the number of the species of plants, would give a weight of five hundred pounds.